Three-body B decays

Hsiang-nan Li Academia Sinica, Taipei Presented at QCD Study Group Apr. 03, 2016 Collaborated with HC Hu, CD Lu, W Wang, WF Wang

Outlines

- Introduction
- Two-hadron distribution amplitudes
- Resonant contributions
- Summary

Introduction

See also Xin-Qiang and Deshan's talks

Dalitz plot

 LHCb has measured CP asymmetries in whole Dalitz plot

Goals

- Develop a theoretical approach to 3-body hadronic B decays
- Understand data of direct CP asymmetries in localized regions, focusing on 3pi, Kpipi
- Predict direct CP asymmetries in other 3-body decay modes
- Predict direct CP asymmetries in whole phase space (resonant + nonresonant). Very challenging

PQCD for 2-body B decays

- PQCD approach to 2-body B decays based on kT factorization: b quark decay kernel convoluted with TMD hadron wave functions
- Parton kT smears end-point singularity

Typical diagram for 3-body decay

$$l^2 \sim w^2$$

 $w^2 \sim m_B^2$ power suppressed compared to
 $w^2 \sim \Lambda m_B, \Lambda^2$

Approaches in literature

- Based on parameterizations of current-induced process transition process
 But, annihilation process?
- Nonfactorizable contribution?
- Resonant via Breit-Wigner then double counting of nonresonant?
- Rescattering strong phases?

Two-hadron distribution amplitudes

Our proposal in 2002 (Chen, Li)

 Inspired by generalized parton distribution (GPD) based on dominance of hand-bag diagram in forward scattering

• Non-forward, same order of magnitude

k1 // k2 no need of hard gluon k1+q1 = k2? k2 off-shell need hard gluon

Two-hadron DA

 Introduce two-hadron distribution amplitude (TDA, crossing of GPD) for dominant region in 3-body B decays

one hard, one soft dominant as two hadrons collimate

two hard-gluon power suppressed

Definitions of TDAs

 TDAs for vector, scalar, tensor currents (from Fierz transformation for factorizing quark flow)

$$\begin{split} \Phi_{v}(z,\zeta,w^{2}) &= \frac{1}{2\sqrt{2N_{c}}} \int \frac{dy^{-}}{2\pi} e^{-izP^{+}y^{-}} \langle \pi^{+}(P_{1})\pi^{-}(P_{2})|\bar{\psi}(y^{-}) \not h_{-}T\dot{\psi}(0)|0\rangle , \\ \Phi_{s}(z,\zeta,w^{2}) &= \frac{1}{2\sqrt{2N_{c}}} \frac{P^{+}}{w} \int \frac{dy^{-}}{2\pi} e^{-izP^{+}y^{-}} \langle \pi^{+}(P_{1})\pi^{-}(P_{2})|\bar{\psi}(y^{-})T\psi(0)|0\rangle , \\ \Phi_{t}(z,\zeta,w^{2}) &= \frac{1}{2\sqrt{2N_{c}}} \frac{f_{2\pi}^{\perp}}{w^{2}} \int \frac{dy^{-}}{2\pi} e^{-izP^{+}y^{-}} \langle \pi^{+}(P_{1})\pi^{-}(P_{2})|\bar{\psi}(y^{-})i\sigma_{\mu\nu}n_{-}^{\mu}P^{\nu}T\psi(0)|0\rangle \end{split}$$

I = 1 with vector, tensor (C-parity odd)
I = 0 with scalar (C-parity even)

 $\sigma^{3/2}$

Kinematics

• Meson momenta in light-cone coordinates

$$p_B = \frac{m_B}{\sqrt{2}}(1, 1, 0_{\rm T}), \quad p = \frac{m_B}{\sqrt{2}}(1, \eta, 0_{\rm T}), \quad p_3 = \frac{m_B}{\sqrt{2}}(0, 1 - \eta, 0_{\rm T})$$

• Two-hadron invariant mass

$$\label{eq:second} \begin{split} \omega^2 = p^2 \qquad p = p_1 + p_2 \qquad \eta = \frac{\omega^2}{m_B^2} \\ \text{pi+ pi-} \end{split}$$

• pi+ momentum fraction

 $p_1^+ = \zeta \frac{m_B}{\sqrt{2}}, \quad p_1^- = (1-\zeta)\eta \frac{m_B}{\sqrt{2}}, \quad p_2^+ = (1-\zeta)\frac{m_B}{\sqrt{2}}, \quad p_2^- = \zeta \eta \frac{m_B}{\sqrt{2}}$

Parameterization of TDAs

- Normalization $\begin{aligned} & \propto (p_1 p_2)^{\mu} F_{\pi} \\ & \int_0^1 dz \Phi_{\parallel}^{I=1}(z,\zeta,w^2) = (2\zeta 1) F_{\pi}(w^2) \\ & \int_0^1 dz \Phi_{\perp}^{I=1}(z,\zeta,w^2) = (2\zeta 1) F_t(w^2) \end{aligned}$
- Up to leading partial wave expansion

$$\begin{split} \Phi_{v,t}(z,\zeta,w^2) &= \frac{3F_{\pi,t}(w^2)}{\sqrt{2N_c}} z(1-z)(2\zeta-1) \\ \text{complex time-like} & \text{correspond to I = 1} \\ \Phi_s(z,\zeta,w^2) &= \frac{3F_s(w^2)}{\sqrt{2N_c}} z(1-z) \\ \end{split}$$

form factors Fs, Ft, twist-3, suppressed by a power in PQCD correspond to I = 0 S wave...

Direct CP asymmetry

• Factorization formula for decay amplitude

 $\mathcal{M} = \Phi_B \otimes H \otimes \Phi_{h_1 h_2} \otimes \Phi_{h_3}$

- B meson and hadron DAs have been widely adopted in analysis of 2-body decay
- Calculate B+ and B- decays

 $A_{CP}^{reg} (B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = 0.52_{-0.22}^{+0.12} (\omega_{B})_{-0.09}^{+0.11} (a_{2}^{\pi})_{-0.03}^{+0.03} (m_{0}^{\pi}) + 0.05 + 0.15 + 0.1$

- Data $A_{CP}^{\text{region}}(\pi^+\pi^-\pi^-) = 0.584 \pm 0.082 \pm 0.027 \pm 0.007$
- Short-distance phase is important
- P wave phase doubled, Acp increases up to 0.7

Resonant contributions

Pire's communication

- After posting our preprint, B. Pire wrote to me about his works
- 0202231[hep-ph] contains an expression

$$\Phi^{I=0}(z,\zeta,m_{2\pi}) = 10z(1-z)(2z-1)R_{\pi}$$

$$\left[-\frac{3-\beta^{2}}{2}e^{i\delta_{0}(m_{2\pi})}|BW_{f_{0}}(m_{2\pi}^{2})| + \beta^{2}e^{i\delta_{2}(m_{2\pi})}|BW_{f_{2}}(m_{2\pi}^{2})|P_{2}(\cos\theta)\right]$$

$$BW_{f_{0/2}}(m_{2\pi}^{2}) = \frac{m_{f_{0/2}}^{2}}{m_{f_{0/2}}^{2} - m_{2\pi}^{2} - im_{f_{0/2}}\Gamma_{f_{0/2}}}$$

- Nonresonant ~ 1/w^2 asymptotically
- Resonant ~ 1/w^4, faster than nonresonant

LHCb measurement

CERN-PH-EP-2013-024 LHCb-PAPER-2013-069 February 26, 2014

1402.6248

Measurement of resonant and $C\!P$ components in $\overline B{}^0_s\to J/\psi\pi^+\pi^- \mbox{ decays}$

Fit fractions

Fit fractions (%) of contributing components for both solutions

Component	Solution I	Solution II
$f_0(980)$	$70.3 \pm 1.5^{+0.4}_{-5.1}$	$92.4 \pm 2.0^{+0.8}_{-16.0}$
$f_0(1500)$	$10.1 \pm 0.8^{+1.1}_{-0.3}$	$9.1\pm0.9\pm0.3$
$f_0(1790)$	$2.4 \pm 0.4^{+5.0}_{-0.2}$	$0.9 \pm 0.3^{+2.5}_{-0.1}$
$f_2(1270)_0$	$0.36 \pm 0.07 \pm 0.03$	$0.42 \pm 0.07 \pm 0.04$
$f_2(1270)_{\parallel}$	$0.52 \pm 0.15^{+0.05}_{-0.02}$	$0.42 \pm 0.13^{+0.11}_{-0.02}$
$f_2(1270)_{\perp}$	$0.63 \pm 0.34^{+0.16}_{-0.08}$	$0.60 \pm 0.36^{+0.12}_{-0.09}$
$f_2'(1525)_0$	$0.51 \pm 0.09^{+0.05}_{-0.04}$	$0.52 \pm 0.09^{+0.05}_{-0.04}$
$f'_2(1525)_{\parallel}$	$0.06^{+0.13}_{-0.04} \pm 0.01$	$0.11_{-0.07-0.04}^{+0.16+0.03}$
$f'_{2}(1525)_{\perp}$	$0.26 \pm 0.18^{+0.06}_{-0.04}$	$0.26 \pm 0.22^{+0.06}_{-0.05}$
NR	-	$5.9 \pm 1.4^{+0.7}_{-4.6}$

Flatte ad BW models

$$\begin{split} F_s^{s\bar{s}}(\omega^2) &= \frac{c_1 m_{f_0(980)}^2 e^{i\theta_1}}{m_{f_0(980)}^2 - \omega^2 - im_{f_0(980)} (g_{\pi\pi}\rho_{\pi\pi} + g_{KK}\rho_{KK})} \\ &+ \frac{c_2 m_{f_0(1500)}^2 e^{i\theta_2}}{m_{f_0(1500)}^2 - \omega^2 - im_{f_0(1500)} \Gamma_{f_0(1500)} (\omega^2)} \end{split}$$

Flatte PLB, 1976
$$+ \frac{c_3 m_{f_0(1790)}^2 e^{i\theta_3}}{m_{f_0(1790)}^2 - \omega^2 - im_{f_0(1790)} \Gamma_{f_0(1790)} (\omega^2)} , \\ \rho_{\pi\pi} &= \frac{2}{3} \sqrt{1 - \frac{4m_{\pi^{\pm}}^2}{\omega^2}} + \frac{1}{3} \sqrt{1 - \frac{4m_{\pi^0}^2}{\omega^2}} \qquad g_{\pi\pi} = 0.167 \text{ GeV} \\ \rho_{KK} &= \frac{1}{2} \sqrt{1 - \frac{4m_{K^{\pm}}^2}{\omega^2}} + \frac{1}{2} \sqrt{1 - \frac{4m_{K^0}^2}{\omega^2}} \qquad g_{KK} = 3.47g_{\pi\pi} \end{split}$$

PQCD results

$$c_1 = 1.17, \quad c_2 = 0.12, \quad c_3 = 0.06,$$

 $\theta_1 = -\frac{\pi}{2}, \quad \theta_2 = \frac{\pi}{4}, \quad \theta_3 = 0.$

 $Br(B_s^0 \to J/\psi f_0(980)[f_0(980) \to \pi^+\pi^-])$ $Br(B_s^0 \to J/\psi f_0(1500)[f_0(1500) \to \pi^+\pi^-])$ $Br(B_s^0 \to J/\psi f_0(1790)[f_0(1790) \to \pi^+\pi^-])$

$$(1.33^{+0.51}_{-0.36}(\omega_{B_s})^{+0.19}_{-0.16}(a_2^{I=0})^{+0.03}_{-0.02}(m_c)) \times 10^{-4} , (1.77^{+0.53}_{-0.39}(\omega_{B_s})^{+0.30}_{-0.25}(a_2^{I=0}) \pm 0.02(m_c)) \times 10^{-5} (2.15^{+0.58}_{-0.49}(\omega_{B_s})^{+0.34}_{-0.32}(a_2^{I=0}) \pm 0.03(m_c)) \times 10^{-6}$$

75.1%10.0%1.2%

closer to Solution I of LHCb data

Comparison with data

 $B_s^0 \to J/\Psi \pi^+ \pi^-$

PQCD(NLO)

LHCb(Sol 1)

Summary

- Systematic approach to 3-body B decays with TDA has been established
- Short-distance and rescattering P-wave phases are equally important for predicting Acp
- Can include both resonant and nonresonant contributions at the same time
- Can explain and predict direct CP asymmetries of 3-body B decays in various localized regions of phase space
- This approach is getting mature

Back-up slides

3-body reduced to 2-body

Available online at www.sciencedirect.com

Physics Letters B 561 (2003) 258-265

PHYSICS LETTERS B

www.elsevier.com/locate/npe

Three-body nonleptonic B decays in perturbative QCD

Chuan-Hung Chen, Hsiang-Nan Li

Institute of Physics, Academia Sinica, Taipei 115, Taiwan, ROC

Received 18 March 2003; accepted 24 March 2003

Editor: T. Yanagida

Abstract

We develop perturbative QCD formalism for three-body nonleptonic *B* meson decays. Leading contributions are identified by defining power counting rules for various topologies of amplitudes. The analysis is <u>simplified into the one for two-body decays</u> by introducing two-meson distribution amplitudes. This formalism predicts both nonresonant and resonant contributions, and can be generalized to baryonic decays.

Motivation

 Recent LHCb data of direct CP asymmetries in localized regions of phase space

 $A_{CP}^{\text{region}}(K^+K^-K^-) = -0.226 \pm 0.020 \pm 0.004 \pm 0.007,$ for $m_{K^+K^-\text{high}}^2 < 15 \text{ GeV}^2$ and $1.2 < m_{K^+K^-\text{low}}^2 < 2.0 \text{ GeV}^2$ $A_{CP}^{\text{region}}(K^{-}\pi^{+}\pi^{-}) = 0.678 \pm 0.078 \pm 0.032 \pm 0.007.$ for $m^2_{K^-\pi^+{\rm high}} < 15~{\rm GeV^2}$ and $0.08 < m^2_{\pi^+\pi^-{\rm low}} < 0.66~{\rm GeV^2}$ $A_{CP}^{\text{region}}(K^+K^-\pi^-) = -0.648 \pm 0.070 \pm 0.013 \pm 0.007$ for $m_{K^+K^-}^2 < 1.5 \text{ GeV}^2$ rho resonance $A_{CP}^{\text{region}}(\pi^+\pi^-\pi^-) = 0.584 \pm 0.082 \pm 0.027 \pm 0.007$ for $m_{\pi^+\pi^-\text{high}}^2 > 15 \text{ GeV}^2$ and $m_{\pi^+\pi^-\text{low}}^2 < 0.4 \text{ GeV}^2$

C-parity

• C-parity (charge parity) for mesonic state is equivalent to parity

$$\mathcal{C} |\pi^+ \pi^-\rangle = (-1)^L |\pi^+ \pi^-\rangle$$

- C-parity for quark fields (spinors) $\psi^{(c)} = C\psi^{\star} \quad C = i\gamma^{2}$ $C^{\dagger}\gamma^{\mu}C = -(\gamma^{\mu})^{\star}$
- C-parity is odd for vector and tensor currents, and even for scalar current

Rescattering phases

- LHCb data of CP asymmetries in localized regions (nonresonant only) offered a chance to confront our theory
- Data for rescattering phases in localized region ($m_{\pi\pi}^2 < 0.4 \ GeV^2$) are available

Complex time-like form factors

Feynman diagrams

 All inputs are ready, go ahead to calculate 16 diagrams (load 10 times lower) nonfactorizable

Direct CP asymmetry

- Require tree (T) and penguin (P) contributions, weak and strong phases
- Penguin annihilation provides (shortdistance) strong phase in 2-body decays

Short-distance phase in PQCD

➡ kT also leads to complex annihilation in PQCD

 $A_{CP}(B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-})$

• PQCD (Mishima, Li): $A_{CP}(B^{\pm} \to K^{\pm} \rho^{0}) = 0.71^{+0.25}_{-0.35}$

 $A_{CP}^{\text{region}}(K^{-}\pi^{+}\pi^{-}) = 0.678 \pm 0.078 \pm 0.032 \pm 0.007$

for $m_{K^-\pi^+\text{high}}^2 < 15 \text{ GeV}^2$ and $0.08 < m_{\pi^+\pi^-\text{low}}^2 < 0.66 \text{ GeV}^2$

 $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-})$

In higher pipi invariant mass

S-wave 2-pion DAs

$$\begin{split} \Phi_{\pi\pi}^{S-wave} &= \frac{1}{\sqrt{2N_c}} \left[\not\!\!\!/ \Phi_{v\nu=-}^{I=0}(z,\zeta,w^2) + \omega \Phi_s^{I=0}(z,\zeta,w^2) \right. \\ &+ \omega (\not\!\!\!/ + \not\!\!\!/ - 1) \Phi_{t\nu=+}^{I=0}(z,\zeta,w^2) \right] \end{split}$$

$$\phi_0 = \frac{9F_s(w^2)}{\sqrt{2N_c}} a_2^{I=0} z(1-z)(1-2z)$$

$$\phi_s = \frac{F_s(w^2)}{2\sqrt{2N_c}}, \quad \phi_\sigma = \frac{F_s(w^2)}{2\sqrt{2N_c}}(1-2z)$$