

Higgs Pair @ Hadron Colliders

Zhao Li IHEP-CAS

QCD Study Group 2016, Shanghai Jiao Tong University April 4 2016

2012 July 4th Higgs announced

H	Higgs Of all the collisions over three years of LHC operation, only one in 5 billion produced the elusive particle.	1.2 million
*	Collisions The LHC produced roughly 90 billion particle collisions a day over the period of operation.	5.8 quadrillion
İİİ	Physicists Collaborators from more than 40 countries worked on two of LHC's detectors, ATLAS and CMS.	6,600
\$\$\$	Dollars The cost of running the LHC for three years came to about \$62 per Higgs.	74 million
-	Power (MW) The electric power required to run the LHC and its experiments was enough to power about 50,000 homes.	50
C	Laps per second Traveling near the speed of light, protons in the LHC travel nearly 300,000 kilometers per second.	11,245

Properties of Higgs

100% satisfied?

Higgs Xsection reconstruction

0

 ≥ 1

≥3

= 0

= 1

 ≥ 2

 $N_{\rm jets}$

= 2

Les Houches wishlist

Process	known	desired	motivation
Н	d\sigma @ NNLO QCD d\sigma @ NLO EW finite quark mass effects @ NLO	d\sigma @ NNNLO QCD + NLO EW MC@NNLO finite quark mass effects @ NNLO	H branching ratios and couplings
H+j	d\sigma @ NNLO QCD (g only) d\sigma @ NLO EW	d\sigma @ NNLO QCD + NLO EW finite quark mass effects @ NLO	H p_T
H+2j	\sigma_tot(VBF) @ NNLO(DIS) QCD d\sigma(gg) @ NLO QCD d\sigma(VBF) @ NLO EW	d\sigma @ NNLO QCD + NLO EW	H couplings
H+V	d\sigma(V decays) @ NNLO QCD d\sigma @ NLO EW	with H→bb @ same accuracy	H couplings
t∖bar tH	d\sigma(stable tops) @ NLO QCD	d\sigma(NWA top decays) @ NLO QCD + NLO EW	top Yukawa coupling
HH	d\sigma @ LO QCD finite quark mass effects d\sigma @ NLO QCD large m_t limit	d\sigma @ NLO QCD finite quark mass effects d\sigma @ NNLO QCD	Higgs self coupling

Higgs Pair Production

HH	d\sigma @ LO QCD finite quark mass effects d\sigma @ NLO QCD large m_t limit	d\sigma @ NLO QCD finite quark mass effects d\sigma @ NNLO QCD	Higgs self coupling

Higgs Self Coupling & New Physics?

SM $\lambda_{HHH} = 3M_H^2/M_Z^2$

Higgs Self Coupling & New Physics?

SM $\lambda_{HHH} = 3M_H^2 / M_Z^2$

$$\lambda_{hhh} = 3\cos 2\alpha \sin(\beta + \alpha) + 3\frac{\epsilon}{M_Z^2}\frac{\cos \alpha}{\sin \beta}\cos^2 \alpha$$
$$\epsilon = 3G_F M_t^4 / (\sqrt{2}\pi^2 \sin^2 \beta)$$

gg→HH @ LO

- NPB309 (1988) 282, E.W.N.Glover, J.J. van der Bij (aimed for SSC & LHC, Mt>40GeV)
- NPB479 (1996) 46, T.Plehn, M.Spira, P.M.Zerwas (corrected Mt & MSSM)

gg→HH @ NLO and beyond

- PRD58(1998)115012, S.Dawson, S.Dittmaier, M.Spira. (heavy Mt limit, QCD correction K~2)
- JHEP1411(2014)079, F.Maltoni, E.Vryonidou, M.Zaro; NPB875(2013)1, J.Grigo, J.Hoff, K.Melnikov, M.Steinhauser. (uncertainty from finite Mt may be +-10%)
- PRL111(2013)201801, D.de Florian, J.Mazzitelli. (NNLO QCD correction, another ~20%)
- NPB900(2015)412, J.Grigo, J.Hoff, M.Steinhauser. (1/Mt expansion estimates 10% for NLO & 5% for NNLO)
- JHEP1509(2015)053, D.de Florian, J.Mazzitelli. (NNLL correction ~7%)

Mt → Infinity

g 0000000

Large Mt Approx.

Failed approximation

m(H,H)

Large Mt approx. must be removed for Higgs investigations

Avaiable Algorithms

Analytical approach:

Simple processes only, i.e. not too many scales. No breakthrough after more than ten years struggle.

Numerical approach:

Conventionally too slow. Popular algorithms are "Sector Decomposition" and "Mellin-Barnes"

$$I = \int_{0}^{1} dx \int_{0}^{1} dy \ x^{-1-\epsilon} y^{-\epsilon} (x + (1-x)y)^{-1}$$

x
$$I = \int_{0}^{1} dx \ x^{-1-\epsilon} \int_{0}^{1} dt \ t^{-\epsilon} (1 + (1-x)t)^{-1}$$

$$+ \int_{0}^{1} dy \ y^{-1-2\epsilon} \int_{0}^{1} dt \ t^{-1-\epsilon} (1 + (1-y)t)^{-1}$$

$$G_{l_1\cdots l_R}^{\mu_1\cdots \mu_R} = \int \prod_{l=1}^L d^D \kappa_l \, rac{k_{l_1}^{\mu_1}\cdots k_{l_R}^{\mu_R}}{\prod_{j=1}^N P_j^{
u_j}\left(\{k\},\{p\},m_j^2
ight)} \,,$$
 $d^D \kappa_l = rac{\mu^{4-D}}{i\pi^{rac{D}{2}}} \, d^D k_l \,, \qquad P_jig(\{k\},\{p\},m_j^2ig) = ig(q_j^2 - m_j^2 + i\deltaig) \,,$

Feynman parameterization

$$\frac{1}{\prod_{j=1}^{N} P_j^{\nu_j}} = \frac{\Gamma(N_{\nu})}{\prod_{j=1}^{N} \Gamma(\nu_j)} \int_0^\infty \prod_{j=1}^{N} dx_j \, x_j^{\nu_j - 1} \delta\left(1 - \sum_{i=1}^{N} x_i\right) \frac{1}{\left[\sum_{j=1}^{N} x_j P_j\right]^{N_{\nu}}},$$

where $N_{\nu} = \sum_{j=1}^{N} \nu_j$, leads to

$$\begin{split} G_{l_1\cdots l_R}^{\mu_1\cdots \mu_R} &= \frac{\Gamma(N_{\nu})}{\prod_{j=1}^N \Gamma(\nu_j)} \int_0^\infty \prod_{j=1}^N dx_j \, x_j^{\nu_j-1} \delta\left(1 - \sum_{i=1}^N x_i\right) \int d^D \, \kappa_1 \cdots d^D \kappa_L \\ & \times k_{l_1}^{\mu_1} \cdots k_{l_R}^{\mu_R} \left[\sum_{i,j=1}^L k_i^{\mathrm{T}} M_{ij} k_j - 2 \sum_{j=1}^L k_j^{\mathrm{T}} \cdot Q_j + J + i\delta \right]^{-N\nu}, \end{split}$$

Integrate out loop momenta

$$G_{l_1 \cdots l_R}^{\mu_1 \cdots \mu_R} = (-1)^{N_{
u}} rac{1}{\prod_{j=1}^N \Gamma(
u_j)} \int_0^\infty \prod_{j=1}^N dx_j \, x_j^{
u_j - 1} \delta\left(1 - \sum_{l=1}^N x_l
ight)$$

$$\times \sum_{m=0}^{[R/2]} \left(-\frac{1}{2} \right)^m \Gamma(N_{\nu} - m - LD/2) [(\tilde{M}^{-1} \otimes g)^{(m)} \tilde{l}^{(R-2m)}]^{\Gamma_1, \dots, \Gamma_R}$$
$$\times \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2 - R}}{\mathcal{F}^{N_{\nu} - LD/2 - m}}, \qquad (7)$$

where

$$\mathcal{F}(\mathbf{x}) = \det(M) \left[\sum_{j,l=1}^{L} Q_j M_{jl}^{-1} Q_l - J - i\delta \right],$$
(8)

$$\mathcal{U}(\mathbf{x}) = \det(M)\,, \quad ilde{M}^{-1} = \mathcal{U}M^{-1}\,, \quad ilde{l} = \mathcal{U}v$$

$$egin{split} \mathcal{U}(\mathbf{x}) &= \sum_{T\in\mathcal{T}_1} \left[\prod_{j\in\mathcal{C}(T)} x_j
ight], \ \mathcal{F}_0(\mathbf{x}) &= \sum_{\hat{T}\in\mathcal{T}_2} \left[\prod_{j\in\mathcal{C}(\hat{T})} x_j
ight](-s_{\hat{T}}), \ \mathcal{F}(\mathbf{x}) &= \mathcal{F}_0(\mathbf{x}) + \mathcal{U}(\mathbf{x}) \, \sum_{j=1}^N x_j m_j^2\,. \end{split}$$

$$egin{aligned} \mathcal{U} &= x_{123}x_{567} + x_4x_{123567} \,, \ \mathcal{F} &= (-s_{12})(x_2x_3x_{4567} + x_5x_6x_{1234} + x_2x_4x_6 + x_3x_4x_5) \ &\quad + (-s_{23})x_1x_4x_7 + (-p_4^2)x_7(x_2x_4 + x_5x_{1234}) \,, \end{aligned}$$
 where $x_{ijk\cdots} = x_i + x_j + x_k + \cdots$ and $s_{ij} = (p_i + p_j)^2.$

First generate primary sectors to eliminate Delta function

$$\int_0^\infty d^N x = \sum_{l=1}^N \int_0^\infty d^N x \prod_{j
eq l \ j
eq l}^N heta(x_l \ge x_j) \, .$$

$$x_j = egin{cases} x_l t_j & ext{ for } j < l\,, \ x_l & ext{ for } j = l\,, \ x_l t_{j-1} & ext{ for } j > l \ \end{cases}$$

$$G_{l} = \int_{0}^{1} \prod_{j=1}^{N-1} dt_{j} \frac{\mathcal{U}_{l}^{N_{\nu}-(L+1)D/2}(\mathbf{t})}{\mathcal{F}_{l}^{N_{\nu}-LD/2}(\mathbf{t})}, \quad l = 1, \dots, N.$$

Determine a sub-set of parameters ti

$$\mathcal{S} = \{t_{\alpha_1}, \ldots, t_{\alpha_r}\}$$

Then divide into r sub-sectors

$$\prod_{j=1}^{r} \theta(1 \ge t_{\alpha_j} \ge 0) = \sum_{k=1}^{r} \prod_{\substack{j=1\\j \ne k}}^{r} \theta(t_{\alpha_k} \ge t_{\alpha_j} \ge 0) .$$
$$t_{\alpha_j} \to \begin{cases} t_{\alpha_k} t_{\alpha_j} & \text{for } j \ne k , \\ t_{\alpha_k} & \text{for } j = k . \end{cases}$$

$$G_{lk} = \int_0^1 \left(\prod_{j=1}^{N-1} dt_j t_j^{a_j - b_j \epsilon}\right) \frac{\mathcal{U}_{lk}^{N_\nu - (L+1)D/2}}{\mathcal{F}_{lk}^{N_\nu - LD/2}}, \quad k = 1, \dots, r.$$

$$\mathcal{U}_{lk_1k_2\cdots}=1+u(\mathbf{t})\,,\quad \mathcal{F}_{lk_1k_2\cdots}=-s_0+\sum_eta(-s_eta)f_eta(\mathbf{t})\,,$$

All the coefficients of divergences are finite (complicated).

Diagram	Α	В	С	S	Х	Н	This	Exponential
							method	S.D.
Bubble	2	2	2	2^*	2		2	2
Triangle	3	3	3	3*	3		3	3
Box	12	12	12	12	12		12	8
Tbubble	58	48	48	48*	48		48	36
Double box, $p_i^2 = 0$	775	586	586	362	293	282	266	106
Double box, $p_4^2 \neq 0$	543*	245*	245*	230*	192*	197	186	100
Double box, $p_i^2 = 0$	1138	698	698	441*	395		360	120
nonplanar								
D420	8898	564	564	180	\mathbf{F}		168	100
3 loop vertex (A8)	4617*	1196*	1196*	871*	750*	684	684	240
Triple box	Μ	114256	114256	22657	10155		6568	856

Quasi-Monte-Carlo

$$I(f) = \int_0^1 d^s x f(\vec{x})$$

+

0.4

0.6

0.2

1

0.8

0.6

0.4

0.2

0

0

+

+

$$I_{estimate}(f) = \sum_{i=0}^{n-1} f(\vec{x_i})$$

$$\int_{i=0}^{n-1} f(\vec{x_i})$$

$$\int_{i=0}^{n-1} f(\vec{x_i})$$

+

+

0.8

+

+

1

+

0.2

0.4

0.6

0.8

1

0

0

23

Quasi-Monte-Carlo

24

Improve Sector Decomposition

Quasi-Monte-Carlo algorithm

Parallel (GPU) technique

Planar Two-Loop Master Integral

	Vegas/CPU	QMC/GPU
P_2	$-7.959 \pm 0.009 - 10.586i \pm 0.009i$	$-7.949 \pm 0.003 - 10.585i \pm 0.005i$
P_1	$3.9 \pm 0.1 - 28.1i \pm 0.1i$	$3.831 \pm 0.005 - 28.022i \pm 0.005i$
P_0	$-3.9 \pm 0.8 + 92.3i \pm 0.8i$	$-4.63 \pm 0.07 + 92.13i \pm 0.07i$
Integration Time	45540s	19s

Non-Planar Two-Loop Master Integral

Vegas/CPU	QMC/GPU
$-3.848 \pm 0.004 + 0.0005i \pm 0.003i$	$-3.8482 \pm 0.0007 + 0.0004i \pm 0.0003i$
$3.81 \pm 0.03 - 6.41i \pm 0.03i$	$3.83 \pm 0.02 - 6.40i \pm 0.02i$
$77.2 \pm 0.2 + 20.1i \pm 0.2i$	$77.2 \pm 0.1 + 19.9i \pm 0.1i$
54290s	20s
	$\begin{array}{r} {\rm Vegas/CPU} \\ -3.848 \pm 0.004 + 0.0005i \pm 0.003i \\ 3.81 \pm 0.03 - 6.41i \pm 0.03i \\ 77.2 \pm 0.2 + 20.1i \pm 0.2i \\ 54290 {\rm s} \end{array}$

gg→HH @NLO with finite top mass

- 2-loop virtual contribution totally has 122
 Feynman diagrams, 126 color ordered amplitudes, 8 integral families/topologies.
- IBP reduction is difficult due to 4 scales.
- Implementation of QMC on phase space integration can also improve the efficiency.
- SecDec group are also working on the same mission, but different technique approaches.

Conclusion & Prospect

- Large Mt approximation is not suitable for Higgs associated production investigation.
- For the first time, we present the results of two-loop master integrals for gg→HH with finite top quark mass.
- Our improved numerical algorithm can obtain results with reasonable accuracy in acceptible time for complete gg->HH@NLO (two-loop) with finite top mass.

Conclusion & Prospect

- H+j @ NLO and beyond with finite top mass
- HH @ NNLO with finite top mass
- e+e-=>HZ @ CEPC EW+QCD correction
- X750 production via GF && its decay
- Single top @ NNLO
- At HL-LHC & SPPC, ttH @ NNLO

•

Thank You