# **Boosted Tops from EFT**

Li Lin Yang Peking University

In collaboration with Andrea Ferroglia, Benjamin D. Pecjak, Darren J. Scott and Xing Wang

#### naturalness

mass

#### TOP QUARK



## QCD@NNLO

Bärnreuther, Czakon, Fiedler, Mitov (2012-2016)

★ Total cross section ✓

\* Forward-backward asymmetry  $\checkmark$ 

★ Differential distributions with fixed renormalization and factorization scales

## QCD@NNLO



moderate energy

# Experiments

#### arXiv:1510.03818

#### CMS PAS TOP-14-012



# Theory vs. Experiment



- Theoretical p<sub>T</sub> spectrum (with fixed-scales) harder than data
- NNLO: marginal agreement

#### Higher p<sub>T</sub>? Higher orders?

Czakon, Heymes, Mitov: 1511.00549

## **Boosted kinematics**



- Tails of distributions sensitive to new physics
- Testing the SM in the energy frontier
- Important background to BSM scenarios

# **Tagging boosted tops**

- \* Moderately-boosted tops: substructures of fat jets
  - John-Hopkins Top Tagger: Kaplan, Tehermann, Schwartz, Tweedie (2008)
  - HEP Top Tagger: Plehn, Spannowsky, Takeuchi, Zerwas (2010)
- \* Highly-boosted tops at 13 TeV
  - \* Schätzel, Spannowsky (2013)
- \* Hyper-boosted tops at 100 TeV?
  - \* Larkoski, Maltoni, Selvaggi (2015)



# Producing boosted tops



## A tale of three scales

$$\hat{\sigma}\left(M_{t\bar{t}}^2, \hat{s} - M_{t\bar{t}}^2, m_t^2, \mu_f^2\right)$$

Mellin/Laplace transform

$$\hat{\sigma}\left(M_{t\bar{t}}^{2}, M_{t\bar{t}}^{2}/\bar{N}^{2}, m_{t}^{2}, \mu_{f}^{2}\right) \ni \ln\frac{M_{t\bar{t}}^{2}}{\mu_{f}^{2}}, \ln\frac{M_{t\bar{t}}^{2}}{\bar{N}^{2}\mu_{f}^{2}}, \ln\frac{m_{t}^{2}}{\mu_{f}^{2}}$$

Question: what should  $\mu_f$  be?

No good answer!

Factorization?

## **Factorization of scales**

Separating two scales at NLO is simple:

$$1 + \alpha_s \left( \ln \frac{Q_1^2}{\mu^2} + \ln \frac{Q_2^2}{\mu^2} \right) \approx \left( 1 + \alpha_s \ln \frac{Q_1^2}{\mu^2} \right) \left( 1 + \alpha_s \ln \frac{Q_2^2}{\mu^2} \right)$$

However

- Valid at higher orders?
- Power corrections: a price to pay

 $(\frac{Q_1}{Q_2})^p$ 

Need a systematic framework!

## **Effective Field Theory**

Systematic framework to deal with multiscale problems in Wilson's RG approach



Here: soft-collinear effective theory (SCET)

Bauer, Flemming, Pirjol, Stewart (2001); Beneke, Chapovsky, Diehl, Feldmann (2002)

# Introducing SCET

#### **\*** Low energy effective theory of QCD

#### \* A field-theoretic language for soft and collinear modes

Lecture Notes in Physics 896

Thomas Becher Alessandro Broggio Andrea Ferroglia

Introduction to Soft-Collinear Effective Theory

Springer

arXiv:1410.1892v2 [hep-ph] 27 Apr 2015

Introduction to Soft-Collinear Effective Theory

#### T. Becher<sup>a</sup> A. Broggio<sup>b</sup> A. Ferroglia<sup>c,d</sup>

<sup>a</sup> Albert Einstein Center for Fundamental Physics, Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
<sup>b</sup> Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
<sup>c</sup> Physics Department, New York City College of Technology, The City University of New York, NY 11201 Brooklyn, USA
<sup>d</sup> The Graduate School and University Center, The City University of New York, NY 10016 New York, USA
E-mail: becher@itp.unibe.ch, alessandro.broggio@psi.ch, aferroglia@citytech.cuny.edu

ABSTRACT: These lectures provide an introduction to Soft-Collinear Effective Theory. After discussing the expansion of Feynman diagrams around the high-energy limit, the effective Lagrangian is constructed, first for a scalar theory, then for QCD. The underlying concepts are illustrated with the Sudakov form factor, i.e. the quark vector form factor at large momentum transfer. We then apply the formalism in two examples: We perform soft gluon resummation as well as transverse-momentum resummation for the Drell-Yan process using renormalization group evolution in SCET, and we derive the infrared structure of n-point gauge theory amplitudes by relating them to effective theory operators. We conclude with an overview of the different applications of the effective theory.

KEYWORDS: Effective field theory, QCD, renormalization group

ArXiv ePrint: 1410.1892

# **Applications of SCET**

**\*** Factorization and resummation

**\***TMD PDFs

\* Infrared singularities of scattering amplitudes

- \* Subtraction methods for NNLO calculations
- \* Jets: event shapes, jet cross sections, jet substructures, non-global logarithms...



## TMD PDFs

Rapidity divergences or why TMD PDFs are difficult

A Lorentz invariant regulator (like DREG) cannot distinguish collinear, anti-collinear and soft!



 $k^+$ 

Additional regulator required!

# Regulators

- \* Off-the-light-cone: Collins, Soper; Ji, Ma, Yuan; Collins;
   Li, Wang See also talk by H. N. Li
- **\***On-the-light-cone (mostly from the SCET community)
  - \*Becher, Neubert (2009); Becher, Bell (2011)
  - \* Chiu, Jain, Neill, Rothstein (2011, 2012)
  - \* Echevarria, Idilbi, Scimemi (2011)
  - **\***Li, Zhu (2016)

# **Two regimes for TMD PDFs**

Genuinely non-perturbative  $\Lambda \sim Q_T \longleftrightarrow \Lambda \sim 1/x_T$ Modeling + data fitting

Semi-perturbative  $\Lambda \ll Q_T \longleftrightarrow \Lambda \ll 1/x_T$ 

Further separation of these two scales: perturbative matching to collinear PDFs!

$$\tilde{B}_{a/A}(\Lambda, Q_T) \sim \tilde{I}_{ac}(Q_T) \otimes f_{c/A}(\Lambda)$$

Important for Q<sub>T</sub> resummation!

## TMD PDFs @ NNLO

 $\tilde{B}_{a/A}(\Lambda, Q_T) \sim \tilde{I}_{ac}(Q_T) \otimes f_{c/A}(\Lambda)$ 

Calculated at two-loop Gehrmann, Lübbert, LLY: 1209.0682, 1403.6451

#### First validation of TMD framework at NNLO!

#### Other calculations:

Echevarria, Scimemi, Vladimirov (2015) Lübbert, Oredsson, Stahlhofen (2016) LLY, Zhu (in preparation)

However, only unpolarized at leading twist! Open question: polarized / higher twists?

## **Back to the top**



Discovered at Fermilab in 1995, the TOP QUARK is as short-lived as it is massive. Weighing in at second, is the briefest of Quarks are an enigmatic particle whose personal thousands of physicists.

## **Hard-soft Factorization**

Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827

Soft limit:  $M \sim m_t \gg M/N$ 



Applications to many other processes such as ttH: Broggio, Ferroglia, Pecjak, Signer, **LLY**, 1510.01914

# Hard-collinear factorization

Mele, Nason (1991)

Small-mass limit:  $M \gg m_t$ 

perturbative fragmentation function

 $\hat{\sigma}(\mu_f) \sim C(L_h, \mu_f) \otimes D_t(L_c, \mu_f) \otimes D_{\bar{t}}(L_c, \mu_f)$  $\ln \frac{M^2}{\mu_f^2}$ 

## **Double factorization**

Ferroglia, Pecjak, LLY: 1205.3662

Boosted limit:  $M \gg M/N$ , m<sub>t</sub>



# The double faces of the top quark

#### Looking down from the high scale M<sub>tt</sub>

collinear quark in SCET



boosted heavy quark in HQET

Looking from the low scale m<sub>t</sub>

## NNLL' resummation

- \* Two-loop anomalous dimensions: Ferroglia, Neubert, Pecjak, LLY, 0907.4791, 0908.3676
- \* Two-loop soft functions: Ferroglia, Pecjak, LLY, 1207.4798
- Two-loop hard functions: Broggio, Ferroglia, Pecjak, Zhang, 1409.5294



# Anomalous dimensions and infrared singularities

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

A universal formula for the infrared singularity and scale dependence of any scattering amplitude in any gauge theory at two-loop order

$$\Gamma(\{\underline{p}\},\{\underline{m}\},\mu) = \sum_{(i,j)} \frac{T_i \cdot T_j}{2} \gamma_{\text{cusp}}(\alpha_s) \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i(\alpha_s) - \sum_{(I,J)} \frac{T_I \cdot T_J}{2} \gamma_{\text{cusp}}(\beta_{IJ},\alpha_s) + \sum_I \gamma^I(\alpha_s) + \sum_{I,j} T_I \cdot T_j \gamma_{\text{cusp}}(\alpha_s) \ln \frac{m_I \mu}{-s_{Ij}} + \sum_{(I,J,K)} i f^{abc} T_I^a T_J^b T_K^c F_1(\beta_{IJ},\beta_{JK},\beta_{KI})$$
(5)  
$$+ \sum_{(I,J)} \sum_k i f^{abc} T_I^a T_J^b T_K^c f_2 \Big( \beta_{IJ}, \ln \frac{-\sigma_{Jk} v_J \cdot p_k}{-\sigma_{Ik} v_I \cdot p_k} \Big) + \mathcal{O}(\alpha_s^3) .$$

$$\begin{split} \mathbf{Z} &= 1 + \frac{\alpha_s^{\text{QCD}}}{4\pi} \left( \frac{\Gamma_0'}{4\epsilon^2} + \frac{\Gamma_0}{2\epsilon} \right) \\ &+ \left( \frac{\alpha_s^{\text{QCD}}}{4\pi} \right)^2 \left\{ \frac{(\Gamma_0')^2}{32\epsilon^4} + \frac{\Gamma_0'}{8\epsilon^3} \left( \Gamma_0 - \frac{3}{2} \beta_0 \right) + \frac{\Gamma_0}{8\epsilon^2} \left( \Gamma_0 - 2\beta_0 \right) + \frac{\Gamma_1'}{16\epsilon^2} + \frac{\Gamma_1}{4\epsilon} \right. \\ &- \frac{2T_F}{3} \sum_{i=1}^{n_h} \left[ \Gamma_0' \left( \frac{1}{2\epsilon^2} \ln \frac{\mu^2}{m_i^2} + \frac{1}{4\epsilon} \left[ \ln^2 \frac{\mu^2}{m_i^2} + \frac{\pi^2}{6} \right] \right) + \frac{\Gamma_0}{\epsilon} \ln \frac{\mu^2}{m_i^2} \right] \right\} + \mathcal{O}(\alpha_s^3) \end{split}$$

#### After our work:

Mitov, Sterman, Sung: 1005.4646 Chien, Schwartz, Simmons-Duffin, Stewart: 1109.6010

# **Two-loop IR for top pairs**

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

|            | $\epsilon^{-4}$ | $\epsilon^{-3}$ | $\epsilon^{-2}$ | $\epsilon^{-1}$ |
|------------|-----------------|-----------------|-----------------|-----------------|
| $A^g$      | 10.749          | 18.694          | -156.82         | 262.15          |
| $B^g$      | -21.286         | -55.990         | -235.04         | 1459.8          |
| $C^{g}$    |                 | -6.1991         | -68.703         | -268.11         |
| $D^g$      |                 |                 | 94.087          | -130.96         |
| $E_l^g$    |                 | -12.541         | 18.207          | 27.957          |
| $E_h^g$    |                 |                 | 0.012908        | 11.793          |
| $F_l^g$    |                 | 24.834          | -26.609         | -50.754         |
| $F_h^g$    |                 |                 | 0.0             | -23.329         |
| $G_l^g$    |                 |                 | 3.0995          | 67.043          |
| $G_h^g$    |                 |                 |                 | 0.0             |
| $H_l^g$    |                 |                 | 2.3888          | -5.4520         |
| $H_{lh}^g$ |                 |                 |                 | -0.0043025      |
| $H_h^g$    |                 |                 |                 |                 |
| $I_l^g$    |                 |                 | -4.7302         | 10.810          |
| $I_{lh}^g$ |                 |                 |                 | 0.0             |
| $I_h^g$    |                 |                 |                 |                 |

- Analytic formula! (too long to be shown here)
- Served as an important ingredients in the NNLO calculation by Czakon et al.

## **NNLO soft functions**



Ferroglia, Pecjak, LLY: 1207.4798

$$\begin{split} \tilde{s}_{qq11}^{(2)} &= \frac{19424}{27} - \frac{6464}{9}L + \frac{1072}{3}L^2 - \frac{176}{3}L^3 + \frac{128}{3}L^4 - \frac{2624}{81}N_l + \frac{896}{27}LN_l - \frac{160}{9}L^2N_l \\ &+ \frac{32}{9}L^3N_l + \frac{268}{9}\pi^2 - \frac{16}{9}L^2\pi^2 - \frac{40}{27}N_l\pi^2 - \frac{56}{9}\pi^4 + \frac{64}{9}L\pi^2H_0(x_l) + \frac{64}{9}L\pi^2H_1(x_l) \\ &+ \left[\frac{128}{3}L^2 - \frac{64}{9}\pi^2\right]H_2(x_l) - \frac{128}{3}LH_3(x_l) - 128H_4(x_l) + \left[\frac{128}{3}L^2 + \frac{64}{9}\pi^2\right]H_{0,0}(x_l) \\ &+ \frac{128}{3}L^2H_{1,0}(x_l) + \frac{64}{9}\pi^2H_{1,0}(x_l) + \left[\frac{128}{3}L^2 - \frac{64}{9}\pi^2\right]H_{1,1}(x_l) - \frac{128}{3}LH_{1,2}(x_l) \\ &- 128H_{1,3}(x_l) + \frac{128}{3}LH_{2,0}(x_l) - 128LH_{2,1}(x_l) - \frac{128}{3}H_{2,2}(x_l) - \frac{128}{3}H_{3,0}(x_l) \\ &+ \frac{128}{3}H_{3,1}(x_l) + 128LH_{0,0,0}(x_l) + 128LH_{1,0,0}(x_l) + \frac{128}{3}LH_{1,1,0}(x_l) \\ &- 128LH_{1,1,1}(x_l) - \frac{128}{3}H_{1,1,2}(x_l) - \frac{128}{3}H_{1,2,0}(x_l) + \frac{128}{3}H_{1,2,1}(x_l) + \frac{128}{3}H_{2,0,0}(x_l) \\ &- 128H_{2,1,0}(x_l) + 128H_{2,1,1}(x_l) - \frac{128}{3}H_{1,2,0}(x_l) + \frac{128}{3}H_{1,2,0}(x_l) + \frac{128}{3}H_{1,2,0}(x_l) \\ &- 128H_{1,1,1,0}(x_l) + 128H_{2,1,1}(x_l) - \frac{176}{3}\zeta_3 + 672L\zeta_3 + \frac{32}{9}N_l\zeta_3 \,, \end{split}$$

one entry in the quark matrix

## **Final formula**

Ferroglia, Pecjak, Scott, LLY: 1512.02535 Pecjak, Scott, Wang, LLY: 1601.07020

 $\hat{\sigma}(N,\mu_f) \sim \operatorname{Tr}\left[\boldsymbol{U}(\mu_f,\mu_h,\mu_s)\boldsymbol{H}(L_h,\mu_h)\boldsymbol{U}^{\dagger}(\mu_f,\mu_h,\mu_s)\boldsymbol{S}(L_s,\mu_s)\right] \\ \times U_D^2(\mu_f,\mu_c,\mu_{sc})C_D^2(L_c,\mu_c)S_D^2(L_{sc},\mu_{sc})$ 

 $\mu_c$ 

 $\mu_h$ 

 $\mu_{sc}$ 

- Combined with NNLL threshold resummation in Ahrens, Ferroglia, Neubert, Pecjak, **LLY**, 1003.5827
- Combined with NLO result
- Applicable not only in the boosted region!

## **8 ТеV: рт**



- Softer spectrum than NNLO (with fixed scales)
- Perfect agreement with data

### 8 TeV: M<sub>tt</sub>



## 13 TeV: рт



- Trend continues: higher order corrections soften the spectrum
- Dynamic scale works well for the NLO

## **13 TeV:** *M*<sub>tt</sub>



- Huge correction at high energy
- Scale variation of the NLO underestimates the uncertainty

## 13 TeV: new data

#### CMS PAS TOP-16-008

#### CMS PAS TOP-16-011





- \* Precision differential distributions for top quark pair production across the whole energy range
- \* Excellent agreements with experimental measurements
- \* Guidance for the scale choices in fixed-order calculations
- \* Validation of Monte-Carlo tools

# Future prospects

- \* Matching with NNLO (with dynamic scales)
- **\***100 TeV collider
- \* Making tops unstable (top jets instead of on-shell tops)
- **\*** Bottom quarks (b-jets or B-hadrons)

# Thank you!