
Boosted Tops from EFT

Li Lin Yang 
Peking University 

In collaboration with Andrea Ferroglia, Benjamin 
D. Pecjak, Darren J. Scott and Xing Wang



naturalness
mass

flavor



QCD@NNLO

Total cross section ✔ 

Forward-backward asymmetry ✔ 

Differential distributions with fixed renormalization 
and factorization scales ✔

Bärnreuther, Czakon, Fiedler, Mitov (2012-2016) 



QCD@NNLO

Czakon, Heymes, Mitov: 1511.00549

3

PP → tt-+X
mt=173.3 GeV
MSTW2008
µF,R/mt∈{0.5,1,2}

Czakon, Heymes, Mitov (2015)

d
σ
/
d
p
T
,
t
 
[
p
b
/
G
e
V
]

NNLO

NLO

LO

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 0  50  100  150  200  250  300  350  400

PP → tt-+X
mt=173.3 GeV
MSTW2008
µF,R/mt∈{0.5,1,2}

Czakon, Heymes, Mitov (2015)

d
σ
/
d
p
T
,
t
 
[
p
b
/
G
e
V
]

 

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 0  50  100  150  200  250  300  350  400

PP → tt-+X
mt=173.3 GeV
MSTW2008
µF,R/mt∈{0.5,1,2}

Czakon, Heymes, Mitov (2015)

d
σ
/
d
p
T
,
t
 
[
p
b
/
G
e
V
]

 

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 0  50  100  150  200  250  300  350  400

PP → tt-+X
mt=173.3 GeV
MSTW2008
µF,R/mt∈{0.5,1,2}

Czakon, Heymes, Mitov (2015)

d
σ
/
d
p
T
,
t
 
[
p
b
/
G
e
V
]

 

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 0  50  100  150  200  250  300  350  400

N
N
L
O
/
N
L
O

 0.9
 1

 1.1
 1.2

 0  50  100  150  200  250  300  350  400

N
L
O
/
L
O

pT,t [GeV]

 0.8
 1

 1.2
 1.4
 1.6

 0  50  100  150  200  250  300  350  400

FIG. 3: Top/antitop pT distribution in LO, NLO and NNLO
QCD. Error bands from scale variation only.

No overflow events are included in any of the bins
shown in this Letter. The normalisations of the distri-
butions in figs. 1,2 are derived in such a way that the
integral over the bins shown in these figures yields unity.
Because of a slight difference in the bins, we note a small
mismatch with respect to the measurements we compare
to: for the top-quark pT distribution CMS has one addi-
tional bin 400GeV < pT < 500GeV (not shown in fig. 1).
This bin contributes only around 4 permil to the normal-
isation of the data and we neglect it in the comparison.
The yt distribution computed by us extends to |yt| < 2.6.
This last bin differs slightly from the corresponding CMS
bin which extends to |yt| < 2.5. This mismatch is shown
explicitly in fig. 2.

We observe that the inclusion of NNLO QCD correc-
tions in the pT,t distribution brings SM predictions closer
to CMS data in all bins. In fact the two agree within er-
rors in all bins but one (recall that the PDF error has not
been included in fig. 2). The case of the yt distribution
is more intriguing; we observe in fig. 2 that the NNLO
and NLO central values are essentially identical in the
whole rapidity range (this is partly related to the size of
the bins). Given the size of the data error, it does not
appear that there is any notable tension between NNLO
QCD and data. The apparent stability of this distri-
bution with respect to NNLO radiative corrections will
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FIG. 4: As in fig. 3 but for the top pair invariant mass.

clearly make comparisons with future high-precision data
very interesting.
We do not compare with CMS data for the mtt̄ and

ytt̄ distributions since the mismatch in binning is more
significant. Instead, in figs. 4,5 we present the NNLO
predictions for the absolute normalisations of these dis-
tributions. We stress that the bin sizes we present are
significantly smaller than the ones in the existing experi-
mental publications. This should make it possible to use
our results in a variety of future experimental and theo-
retical analyses. For this reason, in fig. 3 we also present
the absolute prediction for the top-quark pT distribution
with much finer binning compared to the one in fig. 1.
In figs. 3,4,5 we show the scale variation for each com-

puted perturbative order, together with the NLO and
NNLO K-factors. In all cases one observes a consistent
reduction in scale variation with successive perturbative
orders. Importantly, we also conclude that our scale vari-
ation procedure is reliable, since NNLO QCD corrections
are typically contained within the NLO error bands (and
to a lesser degree for NLO with respect to LO). We also
notice that the NNLO corrections do not affect the shape
of the mtt̄ distribution. The stability of this distribution
with respect to higher-order corrections makes it, among
others, an ideal place to search for BSM physics. It will
be very interesting to check if this property is maintained
with dynamic scales and if it extends to higher mtt̄.
The K-factors in figs. 3,4 show a peculiar rise at low

fixed scales

moderate energy
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Figure 10: Parton-level di↵erential cross-section as a function of the hadronically decaying top quark pT.
MCFM predictions with various PDF sets are also shown. The lower part of the figure shows the ratio of
the MC prediction to the data. The shaded area includes the total statistical plus systematic uncertainties. The
uncertainty on the predictions include the PDF uncertainties and variations of ↵S, µF, µR.

measurements suggest that the top quark pT spectrum is well predicted at low pT by NLO and matrix-
element MC generators, both in normalization and shape, but that their predictions exceed the data at
high pT. The current analysis, focused on the boosted topology and extended to higher pT values, also
observes such a trend. However, a statistical analysis shows that the measurements are compatible
with the majority of MC generator predictions within the quoted uncertainties.
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Figure 1: Normalized differential cross section for the combined electron and muon channels
in bins of (a) particle-level top-jet pT and (b) parton-level top quark pT, including all systematic
uncertainties. The experimental and theoretical uncertainties are shown separately.

7 Conclusions

This analysis presents the first measurement of the tt production cross section in the boosted
regime at CMS. The integrated cross section for the region with ptop

T > 400 GeV as well as the
normalized differential cross section for the same region are measured. The analysis uses the
e/µ+jets final states, identified through an electron/muon and a b-tagged jet from the leptoni-
cally decaying top quark and a single t-tagged jet corresponding to the hadronically decaying
top quark. Backgrounds are modeled using MC for the shapes (data sideband for QCD mul-
tijet production) with normalizations extracted jointly with the inclusive signal yield and the
t-tagging efficiency through maximum likelihood template fits to three kinematic regions, cor-
responding to events with different admixtures.

The total cross section is measured for ptop
T > 400 GeV at particle level and at parton level to

be stt = 1.28 ± 0.09 (stat + syst)± 0.10 (PDF)± 0.09 (Q2)± 0.03 (lumi) pb (particle level) and
stt = 1.44 ± 0.10 (stat + syst) ± 0.13 (PDF) ± 0.15 (Q2) ± 0.04 (lumi) pb (parton level). The
measurements are compared to the theoretical cross section for this pT range, extracted from
POWHEG tt simulation assuming stotal = 252.9 pb, of 1.49 pb (particle level) and 1.67 pb (parton
level). The total cross section for this high-pT region is thus measured to be overestimated by
14% in the POWHEG simulation.

Normalized differential cross sections are also extracted at particle level and at parton level.
Background contributions are subtracted from the t-tagged jet pT distribution to derive a signal-
only data distribution. The distribution is unfolded first to particle level to correct for signal
efficiency, acceptance, and bin migrations to yield the measured cross section in bins of particle-
level top-jet pT. The data distribution is further unfolded to parton level to extract the cross
section in bins of top-quark pT. The measurements are compared to theory predictions, which
are observed to consistently overestimate the cross section.

arXiv:1510.03818 CMS PAS TOP-14-012

high energy (boosted)
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High-precision differential predictions for top-quark pairs at the LHC

Michal Czakon,1 David Heymes,2 and Alexander Mitov2

1Institut für Theoretische Teilchenphysik und Kosmologie,
RWTH Aachen University, D-52056 Aachen, Germany

2Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK

We present the first complete Next-to-Next-to-Leading Order (NNLO) QCD predictions for dif-
ferential distributions in the top-quark pair production process at the LHC. Our results are derived
from a fully differential partonic Monte Carlo calculation with stable top quarks which involves no
approximations beyond the fixed-order truncation of the perturbation series. The NNLO corrections
improve the agreement between existing LHC measurements [V. Khachatryan et al. (CMS Collabo-
ration), arXiv:1505.04480] and Standard Model predictions for the top-quark transverse momentum
distribution, thus helping alleviate one long-standing discrepancy. The shape of the top-quark pair
invariant mass distribution turns out to be stable with respect to radiative corrections beyond NLO
which increases the value of this observable as a place to search for physics beyond the Standard
Model. The results presented here provide essential input for parton distribution function fits,
Monte Carlo generator tuning as well as top-quark mass and strong coupling determination.

INTRODUCTION

There is remarkable overall agreement between Stan-
dard Model (SM) predictions for top-quark pair produc-
tion and LHC measurements. Measurements of the total
inclusive cross-section at 7, 8 and 13 TeV [1–5] agree well
with Next-to-Next-to Leading Order (NNLO) QCD pre-
dictions [6–11]. Differential measurements of final state
leptons and jets are generally well-described by existing
NLO QCD Monte Carlo (MC) generators. Concerning
top-quark differential distributions, the description of the
top-quark pT has long been in tension with data [12–14];
see also the latest differential measurements in the bulk
[15] and boosted top [16] regions. First 13 TeV measure-
ments have just appeared [17, 18] and they show similar
results, i.e. MC predictions tend to be harder than data.
This “pT discrepancy” has long been a reason for con-

cern. Since the top quark is not measured directly, but
is inferred from its decay products, any discrepancy be-
tween top-quark-level data and SM prediction implies
that, potentially, the MC generators used in unfolding
the data may not be accurate enough in their description
of top-quark processes. With the top quark being a main
background in most searches for physics beyond the SM
(BSM), any discrepancy in the SM top-quark description
may potentially affect a broad class of processes at the
LHC, including BSM searches and Higgs physics.
The main “suspects” contributing to such a discrep-

ancy are higher order SM corrections to top-quark pair
production and possible deficiencies in MC event gener-
ators. A goal of this work is to derive the NNLO QCD
corrections to the top-quark pT spectrum at the LHC
and establish if these corrections bridge the gap between
LHC measurements, propagated back to top-quark level
with current MC event generators, and SM predictions
at the level of stable top quarks.
Our calculations are for LHC at 8 TeV. They show

that the NNLO QCD corrections to the top-quark pT

PP → tt-+X
mt=173.3 GeV
MSTW2008
µF,R/mt∈{0.5,1,2}

Czakon, Heymes, Mitov (2015)

(
1
/
σ
)
d
σ
/
d
p
T
,
t
 
[
1
/
G
e
V
 
x
 
1
0
-
3
]

 

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300  350  400

PP → tt-+X
mt=173.3 GeV
MSTW2008
µF,R/mt∈{0.5,1,2}

Czakon, Heymes, Mitov (2015)

(
1
/
σ
)
d
σ
/
d
p
T
,
t
 
[
1
/
G
e
V
 
x
 
1
0
-
3
]

NNLO

NLO

LO

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300  350  400

PP → tt-+X
mt=173.3 GeV
MSTW2008
µF,R/mt∈{0.5,1,2}

Czakon, Heymes, Mitov (2015)

(
1
/
σ
)
d
σ
/
d
p
T
,
t
 
[
1
/
G
e
V
 
x
 
1
0
-
3
]

CMS(l+j)

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300  350  400

D
a
t
a
/
N
N
L
O

pT,t [GeV]

 0.9

 1

 1.1

 1.2

 1.3

 0  50  100  150  200  250  300  350  400

D
a
t
a
/
N
N
L
O

pT,t [GeV]

 0.9

 1

 1.1

 1.2

 1.3

 0  50  100  150  200  250  300  350  400

FIG. 1: Normalised top/antitop pT distribution vs. CMS
data [15]. NNLO error band from scale variation only.

spectrum are significant and must be taken into account
for proper modelling of this observable. The effect of
NNLO QCD correction is to soften the spectrum and
bring it closer to the 8 TeV CMS data [15]. In addition
to the top-quark pT, all major top-quark pair differential
distributions are studied as well.

DETAILS OF THE CALCULATION

In the context of our previous work on the top-quark
forward-backward asymmetry at the Tevatron [19], we

Czakon, Heymes, Mitov: 1511.00549

• Theoretical pT spectrum  
(with fixed-scales) harder 
than data 

• NNLO: marginal agreement

Higher pT? 
Higher orders?



Boosted kinematics
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For small pcutT , the coe�cients �, ✏ are very small, modifying the cross section only by a few percent, which
is less than the uncertainty expected in the inclusive Higgs cross section measurements [116–118]. This is
what is expected due to the very good description of both the top and the new particle loop by the e↵ective
interaction. On the other hand, �, ✏ grow significantly as pcutT increases, and they become O(1) for pcutT > 300
GeV [45]. It means we can break the degeneracy by measuring the Higgs pT distribution while we cannot break
the degeneracy along ct + g = const. direction only by determining the inclusive cross-section.

III. EVENT GENERATION

A. Signal sample

In this paper we consider H+jet events with subsequent H decays to WW ⇤ ! `+`�⌫⌫̄ and ⌧+⌧� modes as a
signal. The signal events are generated with MadGraph5, version 1.5.15 [119] and showered with HERWIG++ [120–
122], where only WW ⇤ and ⌧+⌧� decays are specified.

We have used MadGraph5 to generate H+jet events using the ‘HEFT’ model with SM couplings which makes
use of the low energy theorem. The generated cross-section is proportional to |M(0, 1)|2 and does not take into
account finite top mass e↵ects which are crucial to our analysis. To obtain the correct weight of the events we
reweighted them by a weight factor

w(ct,g) =
|M(ct,g)|2
|M(0, 1)|2 (10)

making use of our own code, which is based on an implementation of the formulas for the matrix elements
given in [115] and also calculated in [123]. At present no finite top mass NLO computation of the SM Higgs pT
spectrum is available. An exact NLO prediction of SM Higgs pT spectrum would be very desirable and help to
exploit the full potential of this observable. Recent progress in the precision prediction of h+ jet can be found
in Refs. [124–126]. We will approximate the NNLO (+ NNLL) result of 49.85 pb [127–130] by multiplying the
exact LO result with a K factor of 1.71.

We reweight the events for points along the line ct + g = 1 for g 2 [�0.5, 0.5] with steps of 0.1, as shown
in the left panel of Fig. 1. This is consistent with the SM inclusive Higgs production cross-section. The size
of ct alone is only weakly constrained by the current tt̄H measurement. Although we only consider the most
di�cult points satisfying ct+g = 1 (i.e. an exactly SM-like inclusive cross-section), an analysis along di↵erent
ct + g = const. lines would be straightforward as a di↵erent choice essentially just corresponds to an overall
rescaling of the signal.

‡‡
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FIG. 1. Left panel: model points generated for this analysis in (ct,g) plane. The shaded area shows parameter
space which gives the inclusive cross-section consistent to the SM prediction within 20%. Right panel: parton level pT,H

distributions for the SM, and (ct,g) = (1� g,g) with g = ±0.1,±0.3,±0.5.

• Tails of distributions 
sensitive to new physics 

• Testing the SM in the 
energy frontier 

• Important background to 
BSM scenarios

Schlaffer et al. (2014)
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Top-tagging: A Method for Identifying Boosted Hadronic Tops

David E. Kaplan, Keith Rehermann, Matthew D. Schwartz and Brock Tweedie
Department of Physics and Astronomy Johns Hopkins University Baltimore, MD 21218, U.S.A.

A method is introduced for distinguishing top jets (boosted, hadronically decaying top quarks)
from light quark and gluon jets using jet substructure. The procedure involves parsing the jet cluster
to resolve its subjets, and then imposing kinematic constraints. With this method, light quark or
gluon jets with pT ≃ 1 TeV can be rejected with an efficiency of around 99% while retaining up to
40% of top jets. This reduces the dijet background to heavy tt̄ resonances by a factor of ∼10, 000,
thereby allowing resonance searches in tt̄ to be extended into the all-hadronic channel. In addition,
top-tagging can be used in tt̄ events when one of the tops decays semi-leptonically, in events with
missing energy, and in studies of b-tagging efficiency at high pT .

The Large Hadron Collider (LHC) is a top factory. The
millions of top quarks it produces will provide profound
insights into the standard model and its possible exten-
sions. Most of the tops will be produced near threshold,
and can be identified using the same kinds of techniques
applied at the Tevatron – looking for the presence of a
bottom quark through b-tagging, identifying the W bo-
son, or finding three jets whose invariant mass is near
mt. However, some of the top quarks produced at the
LHC will be highly boosted. In particular, almost ev-
ery new physics scenario that addresses the hierarchy
problem will include new heavy particles which decay
to tops (such as KK gluons in Randall-Sundrum mod-
els, squarks in supersymmetry, top primes in little Higgs
models, etc.). If their masses are even a factor of a few
above the top mass, the tops that they produce will de-
cay to collimated collections of particles that look like
single jets. In this case, the standard top identification
techniques may falter: b-tagging is difficult because the
tracks are crowded and unresolvable, the W decay prod-
ucts are not always isolated from each other or from the
b jet, and the top jet mass may differ from mt due to an
increased amount of QCD radiation.

In most studies of tt̄ resonances, emphasis is placed
on the channel in which one top decays semi-leptonically
(to an electron or muon, a neutrino, and a b jet) and
the other hadronically [1, 2]. This avoids having to con-
front the large dijet background to all-hadronic tt̄ . How-
ever, these studies need to assume that the lepton can be
isolated, which often excludes the electron channel, and
that at least one b jet is tagged, which is difficult at high
pT [3]. The hard muon tag alone already discards 90%
of the tt̄ events. So one would like to be able to use
the all-hadronic channel without b-tags. In this paper,
we introduce a practical and efficient method for tagging
boosted hadronically-decaying tops.

A top quark’s dominant decay mode is to a b quark
and a W boson with the W subsequently decaying to
two light quarks. The three quarks normally appear as
jets in the calorimeter, but for highly boosted tops these
jets may lie close together and may not always be inde-
pendently resolved. For example, a zoomed-in lego plot
of a typical top jet is shown in Figure 1. It displays
energy deposited in an ideal calorimeter versus pseudo-
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FIG. 1: A typical top jet with a pT of 800 GeV at the LHC.
The three subjets after top-tagging are shaded separately.

rapidity, η, and azimuthal angle, φ. The three quark
jets show up clearly by eye, but it is easy to see how
the number of jets identified by conventional clustering
would be highly variable and strongly dependent on the
jet-resolution parameter. This is the inherent difficulty
with extrapolating the techniques that work for slower
tops, where the decay products are widely separated, to
the boosted case.

The natural direction for finding boosted tops is to
look into subjet analysis and other measures of the en-
ergy distribution in the events. A recent ATLAS note [4]
explored the possibility by cutting on the jet mass and
the ycut variables associated with the kT algorithm. They
achieved an efficiency of 45% for top-tagging at pT = 1
TeV with 1 in 20 background jets getting through. Such
efficiencies are not strong enough to filter tt̄ events from
the enormous dijet background [21].

The key to efficient top-tagging is in isolating features
of QCD which control the background from features par-
ticular to the top quark. As can be seen in Figure 1,
boosted top events look like single jets with three re-
solvable subjets in a small region of the calorimeter.
These subjets are separated by angular scales of order
∼ 2mt/pT , and so remain distinguishable from one an-
other up to pT ’s of roughly 2 TeV for a calorimeter cell

Moderately-boosted tops: substructures 
of fat jets 

John-Hopkins Top Tagger: Kaplan, 
Tehermann, Schwartz, Tweedie (2008) 

HEP Top Tagger: Plehn, Spannowsky, 
Takeuchi, Zerwas (2010) 

Highly-boosted tops at 13 TeV 

Schätzel, Spannowsky (2013) 

Hyper-boosted tops at 100 TeV? 

Larkoski, Maltoni, Selvaggi (2015)

Tagging boosted tops



Producing boosted tops
Two dangerous contributions

quasi-collinear 
gluons

soft gluons

ln
ŝ�M2

tt̄

M2
tt̄

ln
m2

t

M2
tt̄



A tale of three scales
�̂
�
M2

tt̄, ŝ�M2
tt̄,m

2
t , µ

2
f

�

Mellin/Laplace transform

Question: what should μf be? 

�̂
�
M2

tt̄,M
2
tt̄/N̄

2,m2
t , µ

2
f

�
3 ln

M2
tt̄

µ2
f

, ln
M2

tt̄

N̄2µ2
f

, ln
m2

t

µ2
f

No good answer!

Factorization?



Factorization of scales
Separating two scales at NLO is simple: 

1 + ↵s

✓
ln

Q2
1

µ2
+ ln

Q2
2

µ2

◆
⇡

✓
1 + ↵s ln

Q2
1

µ2

◆✓
1 + ↵s ln

Q2
2

µ2

◆

• Valid at higher orders? 
• Power corrections: a price to pay

However

Need a systematic framework!

✓
Q1

Q2

◆p



Effective Field Theory

W

(a)

g

W

(b)

g W

(c)

g

W

(d)

g,γ,Z

W

W

(e)
FIG. 2. One-loop current-current (a)–(c), penguin (d) and box (e) diagrams in the full theory. For pure

QCD corrections as considered in this section and e.g. in VI the γ- and Z-contributions in diagram (d) and
the diagram (e) are absent. Possible left-right or up-down reflected diagrams are not shown.

Under the same conditions, the unrenormalized current-current matrix elements of the opera-
tors Q1 and Q2 are from fig. 3 (a)-(c) found to be

⟨Q1⟩(0) = (III.45)
(

1 + 2CF
αs

4π

(
1

ε
+ ln

µ2

−p2

))

S1 +
3

N

αs

4π

(
1

ε
+ ln

µ2

−p2

)

S1 − 3
αs

4π

(
1

ε
+ ln

µ2

−p2

)

S2

⟨Q2⟩(0) = (III.46)
(

1 + 2CF
αs

4π

(
1

ε
+ ln

µ2

−p2

))

S2 +
3

N

αs

4π

(
1

ε
+ ln

µ2

−p2

)

S2 − 3
αs

4π

(
1

ε
+ ln

µ2

−p2

)

S1

Again, the divergences in the first terms are eliminated through field renormalization. However, in
contrast to the full amplitude, the resulting expressions are still divergent. Therefore an additional
multiplicative renormalization, refered to as operator renormalization, is necessary:

Q(0)
i = ZijQj (III.47)

Since (III.45) and (III.46) each involve both S1 and S2, the renormalization constant is in this
case a 2 × 2 matrix Z. The relation between the unrenormalized (⟨Qi⟩(0)) and the renormalized
amputated Green functions (⟨Qi⟩) is then

⟨Qi⟩(0) = Z−2
q Zij⟨Qj⟩ (III.48)

From (III.45), (III.46) and (III.15) we read off (MS-scheme)

Z = 1 +
αs

4π

1

ε

(
3/N −3
−3 3/N

)

(III.49)
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Systematic framework to deal with multi-
scale problems in Wilson’s RG approach

(a)

g

(b)

g

(c)

g

(d.1)

g,γ

(d.2)

g,γ

FIG. 3. One loop current-current (a)–(c) and penguin (d) diagrams contributing to the LO anomalous
dimensions and matching conditions in the effective theory. The 4-vertex “⊗ ⊗” denotes the insertion
of a 4-fermion operator Qi. For pure QCD corrections as considered in this section and e.g. in VI the
contributions from γ in diagrams (d.1) and (d.2) are absent. Again, possible left-right or up-down reflected
diagrams are not shown.

It follows that the renormalized matrix elements ⟨Qi⟩ are given by

⟨Q1⟩ =

(

1 + 2CF
αs

4π
ln

µ2

−p2

)

S1 +
3

N

αs

4π
ln

µ2

−p2
S1 − 3

αs

4π
ln

µ2

−p2
S2 (III.50)

⟨Q2⟩ =

(

1 + 2CF
αs

4π
ln

µ2

−p2

)

S2 +
3

N

αs

4π
ln

µ2

−p2
S2 − 3

αs

4π
ln

µ2

−p2
S1 (III.51)

Inserting ⟨Qi⟩ into (III.41) and comparing with (III.42) we derive

C1 = −3
αs

4π
ln

M2
W

µ2
C2 = 1 +

3

N

αs

4π
ln

M2
W

µ2
(III.52)

We would like to digress and add a comment on the renormalization of the interaction terms in the
effective theory. The commonly used convention is to introduce via (III.48) the renormalization
constants Zij , defined to absorb the divergences of the operator matrix elements. It is however
instructive to view this renormalization in a slightly different, but of course equivalent way, corre-
sponding to the standard counterterm method in perturbative renormalization. Consider, as usual,
the hamiltonian of the effective theory as the starting point with fields and coupling constants as
bare quantities, which are renormalized according to (q=s, c, u, d)

q(0) = Z1/2
q q (III.53)

C(0)
i = Zc

ijCj (III.54)
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Classic example: weak decays

Here: soft-collinear 
effective theory (SCET)

Bauer, Flemming, Pirjol, Stewart (2001); 
Beneke, Chapovsky, Diehl, Feldmann (2002)



Introducing SCET
Low energy effective theory of QCD 

A field-theoretic language for soft and collinear modes
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Introduction to Soft-Collinear Effective Theory

T. Bechera A. Broggiob A. Ferrogliac,d
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Abstract: These lectures provide an introduction to Soft-Collinear Effective Theory. After

discussing the expansion of Feynman diagrams around the high-energy limit, the effective

Lagrangian is constructed, first for a scalar theory, then for QCD. The underlying concepts

are illustrated with the Sudakov form factor, i.e. the quark vector form factor at large mo-

mentum transfer. We then apply the formalism in two examples: We perform soft gluon

resummation as well as transverse-momentum resummation for the Drell-Yan process using

renormalization group evolution in SCET, and we derive the infrared structure of n-point

gauge theory amplitudes by relating them to effective theory operators. We conclude with

an overview of the different applications of the effective theory.

Keywords: Effective field theory, QCD, renormalization group

ArXiv ePrint: 1410.1892



Applications of SCET

Factorization and resummation 

Infrared singularities of scattering amplitudes 

Subtraction methods for NNLO calculations 

Jets: event shapes, jet cross sections, jet substructures, 
non-global logarithms… 

TMD PDFs



TMD PDFs

k+

k�

Q

�Q

�2Q

�2Q �Q Q

n-coll.

n̄-coll.

soft

Figure 1. The mass-shell hyperbolae showing the distinction between the di↵erent sectors [5]. The
separation between soft and collinear modes is arbitrary and leads to rapidity divergences. The soft
sector has two distinct rapidity (UV) divergences that must cancel with rapidity (IR) divergences
arising from the collinear sector.

Let us now see how factorization of the soft from collinear modes leads to rapidity diver-

gences. Consider the full theory one loop vertex correction. The relevant scalar integral is

given by

If =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · kn̄ · p1 + i✏)

1

(k2 � n̄ · kn · p2 � i✏)
(4.3)

This integral is finite in UV as well as the IR. In the e↵ective theory there are three

contributions. A soft integral coming from taking the limit kµ ! (M, M, M)

IS =

Z

[dnk]
1

(k2 � M2)

1

(�n · k + i✏)

1

(�n̄ · k + i✏)
(4.4)

and two collinear integrals (In, In̄) of the form

In =

Z

[dnk]
1

(k2 � M2)

1

(k2 � n · k n̄ · p1 + i✏)

1

(�n̄ · k + i✏)
. (4.5)

Given that the full theory graph is IR finite, so must be the sum of the e↵ective theory

graphs. Let us consider the soft graph integrating over k?.

IS ⇠
Z

[d2k](n · k n̄ · k � M2)�2✏ 1

(�n · k + i✏)

1

(�n̄ · k + i✏)

(4.6)

We see that the relevant region of phase space lives on the hyperbola n · k n̄ · k ⇠ M2, shown

in figure 1. O↵ the hyperbola the integral becomes scaleless. Given this restriction, we note

that the integral diverges when the rapidity (n · k/n̄ · k) approaches infinity or zero. These

divergences are not regulated by dimensional regularization and correspond to the rapidity

divergences that arise when the soft integral overlaps with the two collinear rapidity regions.

This is illustrated in figure (4). On the other hand, if we consider the collinear n diagram

– 9 –

A Lorentz invariant regulator 
(like DREG) cannot distinguish 

collinear, anti-collinear and soft!

Rapidity divergences or why TMD PDFs are difficult

“rapidity divergences” 
or 

“light-cone singularities”

Additional regulator required!



Regulators
Off-the-light-cone: Collins, Soper; Ji, Ma, Yuan; Collins; 
Li, Wang 

On-the-light-cone (mostly from the SCET community) 

Becher, Neubert (2009); Becher, Bell (2011) 

Chiu, Jain, Neill, Rothstein (2011, 2012) 

Echevarria, Idilbi, Scimemi (2011) 

Li, Zhu (2016)

See also talk by H. N. Li



Two regimes for TMD PDFs
Genuinely non-perturbative ⇤ ⇠ QT  ! ⇤ ⇠ 1/xT

Semi-perturbative ⇤⌧ QT  ! ⇤⌧ 1/xT

Further separation of these two scales: 
perturbative matching to collinear PDFs!

Modeling + data fitting

B̃a/A(⇤, QT ) ⇠ Ĩac(QT )⌦ fc/A(⇤)

Important for QT resummation!



TMD PDFs @ NNLO
B̃a/A(⇤, QT ) ⇠ Ĩac(QT )⌦ fc/A(⇤)

Calculated at two-loop Gehrmann, Lübbert, LLY: 1209.0682, 1403.6451

Other calculations:
Echevarria, Scimemi, Vladimirov (2015) 
Lübbert, Oredsson, Stahlhofen (2016) 
LLY, Zhu (in preparation)

However, only unpolarized at leading twist!
Open question: polarized / higher twists?

First validation of TMD framework at NNLO!



Back to the top



Hard-soft Factorization

ln
M2

µ2
f

ln
M2

N̄2µ2
f

Soft limit: M ~ mt ≫ M/N

Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827

�̂(N,µf ) ⇠ Tr
⇥
H(Lh, µf )S(Ls, µf )

⇤

Applications to many other processes such as ttH: 
Broggio, Ferroglia, Pecjak, Signer, LLY, 1510.01914 



Hard-collinear 
factorization

Mele, Nason (1991)

Small-mass limit: M ≫ mt

�̂(µf ) ⇠ C(Lh, µf )⌦Dt(Lc, µf )⌦Dt̄(Lc, µf )

ln
M2

µ2
f

ln
m2

t

µ2
f

perturbative fragmentation function



Double factorization

�̂(N,µf ) ⇠ Tr
⇥
H(Lh, µf )S(Ls, µf )

⇤
C2

D(Lc, µf )S
2
D(Lsc, µf )

ln
M2

µ2
f ln

M2

N̄2µ2
f

ln
m2

t

N̄2µ2
fln

m2
t

µ2
f

Boosted limit: M ≫ M/N, mt 

Emergence of a soft-collinear scale mt/N!

Ferroglia, Pecjak, LLY: 1205.3662



The double faces of the 
top quark

Looking down from the high scale Mtt

Looking from the low scale mt

collinear quark 
in SCET

boosted heavy 
quark in HQET



NNLL’ resummation

Two-loop anomalous dimensions: 
Ferroglia, Neubert, Pecjak, LLY, 
0907.4791, 0908.3676 

Two-loop soft functions: Ferroglia, 
Pecjak, LLY, 1207.4798 

Two-loop hard functions: Broggio, 
Ferroglia, Pecjak, Zhang, 
1409.5294

µf

µh

µs µc

µsc

RG flow



Anomalous dimensions 
and infrared singularities

A universal formula for the 
infrared singularity and scale 
dependence of any scattering 

amplitude in any gauge 
theory at two-loop order

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

with TF = 1
2 . Here mi denote the masses of the heavy quarks. Note that, as an alternative

to (2), one can convert the expression for the Z factor from the effective to the full theory by
replacing αs → ξ−1 αQCD

s . We will make use of this possibility in Section 4 to predict the IR
poles of the qq̄ → tt̄ and gg → tt̄ amplitudes in full QCD.

The relation

Z−1(ϵ, {p}, {m}, µ)
d

d lnµ
Z(ϵ, {p}, {m}, µ) = −Γ({p}, {m}, µ) (4)

links the renormalization factor to a universal anomalous-dimension matrix Γ, which governs
the scale dependence of effective-theory operators built out of collinear SCET fields for the
massless partons and heavy-quark effective theory (HQET [32]) fields for the massive ones. For
the case of massless partons, the anomalous dimension has been calculated at two-loop order
in [7, 8] and was found to contain only two-parton color-dipole correlations. It has recently
been conjectured that this result may hold to all orders of perturbation theory [10, 14, 16]. On
the other hand, when massive partons are involved in the scattering process, then starting at
two-loop order correlations involving more than two partons appear [25], the reason being that
constraints from soft-collinear factorization and two-parton collinear limits, which protect the
anomalous dimension in the massless case, no longer apply [26].

At two-loop order, the general structure of the anomalous-dimension matrix is [26]

Γ({p}, {m}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs) +
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj

+
∑

(I,J,K)

ifabc T a
I T b

J T c
K F1(βIJ , βJK , βKI) (5)

+
∑

(I,J)

∑

k

ifabc T a
I T b

J T c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

+ O(α3
s) .

The one- and two-parton terms depicted in the first two lines start at one-loop order, while
the three-parton terms in the last two lines start at O(α2

s). Starting at three-loop order also
four-parton correlations would appear. The notation (i, j, . . . ) etc. refers to unordered tuples
of distinct parton indices. We have defined the cusp angles βIJ via

cosh βIJ =
−sIJ

2mImJ

= −σIJ vI · vJ − i0 = wIJ . (6)

They are the hyperbolic angles formed by the time-like Wilson lines of two heavy partons.
The physically allowed values for wIJ are wIJ ≥ 1 (one parton incoming and one outgoing),
corresponding to βIJ ≥ 0, or wIJ ≤ −1 (both partons incoming or outgoing), corresponding
to βIJ = −b + iπ with real b ≥ 0.1 The first possibility corresponds to space-like kinematics,

1This choice implies that sinhβ =
√

w2 − 1. Alternatively, we could have used βIJ = b − iπ with b ≥ 0, in
which case sinhβ = w

√
1 − w−2. We have confirmed that our results are the same in both cases.

4

result

Z = 1 +
αQCD

s

4π

(

Γ′
0

4ϵ2
+

Γ0

2ϵ

)

+

(

αQCD
s

4π

)2
{

(Γ′
0)

2

32ϵ4
+

Γ′
0

8ϵ3

(

Γ0 −
3

2
β0

)

+
Γ0

8ϵ2
(Γ0 − 2β0) +

Γ′
1

16ϵ2
+

Γ1

4ϵ

−
2TF

3

nh
∑

i=1

[

Γ′
0

(

1

2ϵ2
ln

µ2

m2
i

+
1

4ϵ

[

ln2 µ2

m2
i

+
π2

6

])

+
Γ0

ϵ
ln

µ2

m2
i

]}

+ O(α3
s) .

(62)

The coefficients Γn are defined via the expansion

Γ =
∑

n≥0

Γn

(αs

4π

)n+1
, (63)

and similarly for the quantity Γ′ = −2Ci γcusp(αs), where Ci = CF for the qq̄ channel, and
Ci = CA for the gg channel. The f2 term enters the two-loop 1/ϵ pole via Γ1/ϵ in (62).
We emphasize that in the β-function coefficient β0 = 11

3 CA − 4
3 TFnl and in the two-loop

anomalous-dimension coefficients Γ1 and Γ′
1 in (62) the number nl of active flavors only includes

the massless quarks, not the massive ones. The nh dependence of the full-theory Z factor is
contained entirely in the terms shown in the third line.

The result (60) is an exact prediction for the IR poles of the partonic amplitudes at
two-loop order, which can be tested against explicit loop calculations. In practice, however,
one is interested mainly in the real part of the interference terms ⟨M(0)

n |M(2)
n ⟩, since it is

these which are needed to calculate partonic cross sections. For this reason, we give results
for the interference terms rather than the amplitudes themselves. For the specific case of
tt̄ production, the full results for both the qq̄ and gg channels are rather lengthy and are
included as a computer program in the electronic version of this paper. In what follows, we
will define the color decomposition used at two-loop order and describe to what extent we
can compare our results with those available in the literature. As explained below, the three-
parton correlations proportional to f2 do not appear in the interference of the Born level and
two-loop amplitudes, neither in the qq̄ channel nor in the gg channel.

For the qq̄ → tt̄ channel, the result for the interference term between the Born and two-loop
amplitudes can be decomposed into color structures according to [42]

2 Re ⟨M(0)|M(2)⟩qq̄ = 2(N2 − 1)

(

N2Aq + Bq +
1

N2
Cq + Nnl D

q
l + Nnh Dq

h

+
nl

N
Eq

l +
nh

N
Eq

h + n2
l F

q
l + nlnh F q

lh + n2
hF

q
h

)

.

(64)

To compute the IR poles in the color coefficients above, we evaluate the general relation (60)
using (62) for the renormalization factor and (53) for the anomalous-dimension matrix. In
addition, we need the finite parts of the UV-renormalized one-loop QCD amplitude up to
O(ϵ), decomposed into the singlet-octet color basis. We have obtained these through direct

19

Mitov, Sterman, Sung: 1005.4646 
Chien, Schwartz, Simmons-Duffin, 
Stewart: 1109.6010

After our work:



Two-loop IR for top pairs

ϵ−4 ϵ−3 ϵ−2 ϵ−1

Ag 10.749 18.694 −156.82 262.15

Bg −21.286 −55.990 −235.04 1459.8

Cg −6.1991 −68.703 −268.11

Dg 94.087 −130.96

Eg
l −12.541 18.207 27.957

Eg
h 0.012908 11.793

F g
l 24.834 −26.609 −50.754

F g
h 0.0 −23.329

Gg
l 3.0995 67.043

Gg
h 0.0

Hg
l 2.3888 −5.4520

Hg
lh −0.0043025

Hg
h

Ig
l −4.7302 10.810

Ig
lh 0.0

Ig
h

Table 1: Numerical results for the IR poles in the color coefficients (65) for top-
quark pair production in the gg → tt̄ channel, evaluated at the point t1 = −0.45s,
s = 5m2

t , and µ = mt. The blank entries are not present in general, while the entries
with value 0.0 vanish only for the particular choice µ = mt.

be expressed in terms of the invariants s = (p1 + p2)2 and t = (p1 − p3)2 as

β12 = β34 = arccosh
(

−
s − 2m2

2m2

)

≡ iπ − γ ,

β13 = β24 = arccosh
(2m2 − t

2m2

)

= O
(

√
−t

m

)

,

β14 = β23 = arccosh
(s + t − 2m2

2m2

)

= γ + O
( t

m2

)

,

(67)

where cosh γ = v1 · v2 = p1 · p2/m2. In the limit t/m2 → 0 these angles are described in terms
of a single variable γ > 0. Starting from the general expression (5), we then obtain for the
cross anomalous-dimension matrix

Γcross(γ, αs) ≡ Γqq(s, t, m
2, µ)

∣

∣

−t≪s,m2

= −2
[

T1 · T2 γcusp(iπ − γ, αs) + T1 · T3 γcusp(0, αs) + T1 · T4 γcusp(γ, αs)
]

+ 4γQ(αs) + 24ifabc T a
1 T b

2 T c
3 F1(iπ − γ, γ, 0) + O(α3

s) ,

(68)
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• Analytic formula! (too long 
to be shown here) 

• Served as an important 
ingredients in the NNLO 
calculation by Czakon et al.

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676



NNLO soft functions
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Figure 2: Two-Wilson-line integrals required in the calculation of the NNLO soft matrix.

+ 4w(9)
12 Ī4(a12) +

(

w
(4)
12 +w

(4)
34

)

(

Ī4(a12) + 2Ī5(a12)
)

+ 2w(4)
13

(

Ī4(a13) + 2Ī5(a13)
)

+ 2w(4)
14

(

Ī4(a14) + 2Ī5(a14)
)

(21)

+ 4
(

w
(8)
123 +w

(8)
314

)

Ī8(a12, a13) + 4
(

w
(8)
124 +w

(8)
324

)

Ī8(a12, a14) + 8w(8)
134 Ī8(a13, a14) .

Three types of basic diagrams contribute to this sum, depending on whether the gluons attach
to two, three, or four distinct Wilson lines. We organize this section by discussing each type of
diagram in term, and give explicit results for the color factors and integrals appearing in (21).
The results for the three and four parton diagrams turn out to be surprisingly simple, because
the non-abelian exponentiation theorem constrains the coefficients of the color structures w(8)

ijk

and w
(9)
ijkl in (20). We discuss this further in Appendix B.

3.1 Two-Wilson-line integrals

The subset of non-vanishing two-Wilson-line integrals is familiar from other calculations of soft
functions to NNLO [19, 24, 26]. The relevant Feynman diagrams are shown in Figure 2. Con-
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Figure 3: The abelian three-Wilson-line integrals required in the calculation of the NNLO soft
matrix.
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the NNLO soft matrix.

Each of the four diagrams in the last two rows of Figure 3, on the other hand, are complicated
functions of two distinct scalar products. However, the sums of the pairs (c)+(d) and (e)+(f)
are proportional to symmetric color structure w(8):

D(c)+(d)
8 →

(

T b
i T

a
i + T a

i T b
i

)

T a
j T

b
k

∫

[dk] [dl]
ni · nj ni · nk δ(ω − n0 · (k + l))

ni · l ni · (k + l) nj · k nk · l
,

D(e)+(f)
8 →

(

T a
i T b

i + T b
i T

a
i

)

T a
j T

b
k

∫

[dk] [dl]
ni · nj ni · nk δ(ω − n0 · (k + l))

ni · k ni · (k + l) nj · k nk · l
. (38)

Furthermore, after partial fractioning, the sum of the two integrals yields the factorized integral
(36). Therefore, these abelian diagrams do not introduce any new calculational complications.
In Appendix B we explain how the non-abelian exponentiation theorem implies the simple
factorized form of the integral multiplying the symmetric color structure (35). The color
matrices for the qq̄ channel are

w
(8)
123 = w

(8)
214 = w

(8)
314 = w

(8)
423 =

CF

2

(

0 N2−2
2N

N2−2
2N −N2−2

2N2

)

,

w
(8)
124 = w

(8)
213 = w

(8)
324 = w

(8)
413 =

CF

2

(

0 −N2−2
2N

−N2−2
2N − 1

N2

)

,
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Figure 6: Four-Wilson-line diagrams contributing to the NNLO soft function.

The relative minus sign between the two diagrams originates from the fact that the gluon
propagator carrying momentum k+l appears on opposite sides of the cut in the two diagrams4.
Therefore, the sum of the two diagrams cancels. This is due to the structure of the color
factors and not the integral itself, and is also true of one-particle cuts not shown in the figure.
Interestingly enough, it would also be true if the velocity vectors were time-like, even though
such anti-symmetric three-particle correlations are present in the anomalous dimension for
massive particles [40, 41]. This is not a contradiction, since the soft function for massive
heavy-quark production obeys an RG equation analogous to (49) below and the contribution
of the three-particle correlations cancels between the sum of terms involving γs and γ†

s .

3.3 Four-Wilson-line integrals

We finally turn to the four-Wilson-line integrals. The two-particle cuts shown in Figure 6 are
a convolution of NLO integrals and of the same form as I4 and I8. The general integral reads

I9(ω, aij, akl) =

∫

[dk] [dl]
ni · nj nk · nl δ(ω − n0 · (k + l))

ni · k nj · k nk · l nl · l
, (44)

and the color factor is

w
(9)
ij =

1

dR
T a
i T a

j T b
k T

b
l (i ̸= j ̸= k ̸= l) . (45)

For two-to-two scattering considered here the relations between the different scalar products
implies that we need only I9(ω, aij, aij) = I4(ω, aij), which we already took into account in

writing (20). The explicit results for the color matrices are w(9)
ij = w

(3)
ij in the qq̄ channel, and

for the gg they read

w
(9)
12 =

CA

2

⎛

⎜

⎝

N2 − 1 0 0

0 −1
4 0

0 0 −N2−4
4N2

⎞

⎟

⎠
, (46)

4This change of sign also occurs in the diagrams generated from the non-abelian two Wilson-line diagrams
D6 and D7,2 in Figure 2 by moving the two-gluon attachment to the other side of the cut. However, in those
cases the order of the two color generators T a

i and T b
i is also exchanged, which compensates the sign change

of the propagators.
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C Renormalized Soft Functions

We list here the results for the renormalized soft function in the qq̄ and gg production channels.
For the sake of brevity we set N = 3 and take into account that the soft function is symmetric.
In the following, we indicate the element ij of the matrix s̃

(n)
k (k ∈ {qq̄, gg}) as s̃(n)k ij .

C.1 Quark Annihilation Channel

The elements of the NLO soft matrix in Laplace space are

s̃(1)qq 11 = 16L2 +
8

3
π2 ,

s̃(1)qq 12 =
8π2

9
+

16

3
LH0(xt) +

16

3
LH1(xt)−

16

3
H2(xt) +

16

3
H0,0(xt) +

16

3
H1,0(xt)−

16

3
H1,1(xt) ,

s̃(1)qq 22 =
32L2

9
+

44π2

27
+

56

9
LH0(xt)−

16

9
LH1(xt) +

16

9
H2(xt) +

56

9
H0,0(xt) +

56

9
H1,0(xt)

+
16

9
H1,1(xt) . (66)

The elements of the NNLO soft matrix in Laplace space are

s̃(2)qq 11 =
19424

27
−

6464

9
L+

1072

3
L2 −

176

3
L3 +

128

3
L4 −

2624

81
Nl +

896

27
LNl −

160

9
L2Nl

+
32

9
L3Nl +

268

9
π2 −

16

9
L2π2 −

40

27
Nlπ

2 −
56

9
π4 +

64

9
Lπ2H0(xt) +

64

9
Lπ2H1(xt)

+

[

128

3
L2 −

64

9
π2

]

H2(xt)−
128

3
LH3(xt)− 128H4(xt) +

[

128

3
L2 +

64

9
π2

]

H0,0(xt)

+
128

3
L2H1,0(xt) +

64

9
π2H1,0(xt) +

[

128

3
L2 −

64

9
π2

]

H1,1(xt)−
128

3
LH1,2(xt)

− 128H1,3(xt) +
128

3
LH2,0(xt)− 128LH2,1(xt)−

128

3
H2,2(xt)−

128

3
H3,0(xt)

+
128

3
H3,1(xt) + 128LH0,0,0(xt) + 128LH1,0,0(xt) +

128

3
LH1,1,0(xt)

− 128LH1,1,1(xt)−
128

3
H1,1,2(xt)−

128

3
H1,2,0(xt) +

128

3
H1,2,1(xt) +

128

3
H2,0,0(xt)

− 128H2,1,0(xt) + 128H2,1,1(xt) + 128H0,0,0,0(xt) + 128H1,0,0,0(xt) +
128

3
H1,1,0,0(xt)

− 128H1,1,1,0(xt) + 128H1,1,1,1(xt)−
176

3
ζ3 + 672Lζ3 +

32

9
Nlζ3 ,

22

one entry in the 
quark matrix



Final formula

�̂(N,µf ) ⇠ Tr
⇥
U(µf , µh, µs)H(Lh, µh)U

†(µf , µh, µs)S(Ls, µs)
⇤

⇥ U2
D(µf , µc, µsc)C

2
D(Lc, µc)S

2
D(Lsc, µsc)

Ferroglia, Pecjak, Scott, LLY: 1512.02535 
Pecjak, Scott, Wang, LLY: 1601.07020

µf

µh

µs µc

µsc

• Combined with NNLL threshold 
resummation in Ahrens, Ferroglia, 
Neubert, Pecjak, LLY, 1003.5827 

• Combined with NLO result 
• Applicable not only in the boosted 

region!



8 TeV: pT
Ferroglia, Pecjak, Scott, LLY: 1512.02535 
Pecjak, Scott, Wang, LLY: 1601.07020

• Softer spectrum than 
NNLO (with fixed 
scales) 

• Perfect agreement 
with data
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Perfect agreement
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13 TeV: pT
Ferroglia, Pecjak, Scott, LLY: 1512.02535 
Pecjak, Scott, Wang, LLY: 1601.07020

• Trend continues: higher 
order corrections soften 
the spectrum 

• Dynamic scale works 
well for the NLO
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13 TeV: Mtt

• Huge correction at 
high energy 

• Scale variation of the 
NLO underestimates 
the uncertainty

Ferroglia, Pecjak, Scott, LLY: 1512.02535 
Pecjak, Scott, Wang, LLY: 1601.07020
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13 TeV: new data
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Figure 8: Differential cross sections at parton level as a function of pT(t), |y(t)|, and M(tt̄)
compared to the predictions of an approximate NNNLO calculation [29, 30] and a NLO+NNLL’
calculation [31].
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Figure 4: Normalized differential tt̄ production cross section as a function of the pt
T (top) and

yt (bottom) of the top quarks or antiquarks. The inner (outer) error bars indicate the statistical
(combined statistical and systematic) uncertainty. The data are compared to predictions from
POWHEG V2 + PYTHIA8, MG5 aMC@NLO + PYTHIA8 [FxFx], MG5 aMC@NLO + PYTHIA8
[MLM], and POWHEG V2 + HERWIG++ (left), and to beyond-NLO QCD calculations [17–20]
(right), when available.

CMS PAS TOP-16-011



Summary

Precision differential distributions for top quark pair 
production across the whole energy range 

Excellent agreements with experimental measurements 

Guidance for the scale choices in fixed-order calculations 

Validation of Monte-Carlo tools



Future prospects

Matching with NNLO (with dynamic scales) 

100 TeV collider 

Making tops unstable (top jets instead of on-shell tops) 

Bottom quarks (b-jets or B-hadrons)



Thank you!


