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Outline

 Geometry of particle collisions
 Quantum Field Theory and phenomenology
 Analytic structure of perturbation theory
 Attempt of axiomatization



  

Collider experiments in particle 
physics

 LHC



  

Particle detectors: ATLAS



  

Particles as field quanta

 Elementary particles as quanta of fields
 Classical fields: 
 The Standard Model



  

Events

 We study geometry and topology of interaction 
region. Effective geometry, nonlocality.



  

Plane wave solutions an 
quantization

 Momentum operator and normalization
 Hyperboloid, negative curvature, “creation” of new spaces
 The universal configuration space in p.T.
 Algebra of operators, commutation relations
 Electromagnetic coupling constant 
 Hamiltonian
 Self energy problem, normal ordering



  

S-matrix

 Heisenberg representation 
 Schroedinger eqn
 T exponent
 Normal ordering and Wick's theorem
 Final states as free particles



  

Feynman Diagrams

Enumerate p. T terms by graphs
 Their use at collider phenomenology
 Final state, creation of particles
 LO diagrams, rad corr
 Analogy for non linear PDEs. Greens functions on 

domains 
 Chern Simons: metric independence
  Causality and backward forward mixing



  

Propagators

 Wick theorem 
 Vacuum expectations of time ordered products 

 Propagator in x-space



  

Amplitudes

 The integral expression
 Analytic continuation, the contour
 Divergences.
 Cut off
 Dimensional regularization 



  

Divergences and renormalization

 Single regularization parameter, cut off ( or complex dimension)
 Series in ln(L)
 Observables are independent of the cutoff, calculation -does 

depend
 Beta function. It is defined on pro-finite riemann  surface. 

Number theory (Connes). Foliations, Teichmuller theory. Can 
we get 1/137.03599 out of some  number theoretic constructs? 
Noncommutative geometry. Coupling itself is a dynamic object. 
Algebra with infinity of operations.

 Need for geometry of particle configuration spaces. 



  

Magnetic moment

 The triangle diagram

 UV and IR divergent
 The limits: 

 Off shell- dilogarithm 



  

QCD

 Lagrangian

 Vertices



  

QCD:asymptotic freedom

 Asymptotic freedom



  

QCD and the parton model

 Deep inelastic scattering, picture, virtual 
photon, Lorenz contraction,

 f(x,Q2) as matrix element
 f_proton, different quarks
 Anomalous dimensions, OPE 



  

Infrared safeness

 Collinear divergences
 Soft-collinear effective theory
 Summation of large logarithms. What about 

other function forms?
 Quark-gluon “sea”



  

BFKL and DGLAP evolution

 Scaling violation: Q^2 dependence
 Collinear divergences
 Evolution equations, solutions
 Hera data, singularity at small x,BK



  

Evolution of parton densities

 Pdf proton
 Form factors
  Bjorken variable



  

DGLAP- Q^2 evolution

 Collinear splitting of on-shell partons

 The ladders- physics,picture
 Sums logs 



  

BFKL

 Ladders , phase space approximation
 BK and exponential ends
 Switch regimes, different eqns



  

Higher twists, transverse space etc. 

 Higher twists
 Small x functional eqn
 Exclusivity:interference between final states
 TMD



  

Jets

 The probability is concentrated near diagonals: 
partons are clustered

 Jets, picture, q g jets. 
 B-tagging: new physics
 Jet substructure: new physics 



  

Event generators 

 Pythia picture
 Several stages:

one is I.C. for the next
 Non-local objects: strings
 Analogy of Wilson lines



  

Factorization “theorem”

 Distribution and Fragmentation functions
 Scale space, L QCD, its geometry. Terms and ends of 

manifolds
 The formula
 Typical calculation.
 What is the algebra behind it? It is a type of universal 

algebra (infinity of operations, of increasing arity)
 Ordering of space times. Causality.  



  

Bound states

 Understanding of what they are conceptually
 The mass gap problem
 Clay Institute Millennium problem: Witten and Jaffe paper
 Essentially multi-particle problem. Define expansion 

space geometry. 
 M_p interpret in terms of function space geometry.
 Scale space is large dimensional L_QCD/m_q~200
 Picks up quarks and gluons from vacuum



  

Bound states in experiment

 Pole in complex domain



  

Bound state equation

 Dirac equation with radiative corrections 
resums diagrams



  

Bound states: the Dirac atom 

 The Dirac equation. 
 The two interacting lines, limit in p.T
 Recoil
 Bethe logarithm



  

2-body problem

 Bethe Salpeter equation, resummation

 Essentially two particle states
 Exponential decay of high energy states 



  

Attempts of axiomatization

 Whightman
 Osterwalder-Schraeder
 Haag
 Segal (2d)
 Atiyah (topological)
 Seiberg Witten (a model of confinement)



  

“Pinching” and singularities

 For the evaluation of the integrals it is important  to 
understand how the topology of the space of external 
momenta changes as we vary the parameters

 Zoo of pinches: non isolated singularities
 Vanishing cycles
 Residue forms
 Mild generalization of Grassmannians: the vanishing  

cycles in QFT.



  

Stratification of external momentum 
space

 The degeneracy conditions 
 Elimination theory
 Toric geometry
 Examples: self energy`
 Triangle, leading singularity 



  

Local structure of amplitudes near 
multi-discriminant loci 

 Steenbrink-Danilov-Varchenko 
 Emergence of logarithms in 1d deformations of 

isolated singularity
 Holomorphic representations of the 

fundamental groups of the complements
  Local fundamental group. 



  

Holonomic D-modules

 GZK approach. 
 Pull back
 Poly logarithm on varieties. Beyond iterated 

integrals. 
 Moduli spaces of singularities
 Series and special points
 Relate algebra of coefficients to the combinatorics 

of the graph



  

Wave functionals 

 Generating functionals for correlators 
 Laplace  equation on the function space
 Boundary conditions. Spheres in function spaces. Possible 

non-contractibility of spheres. Does it matter for the set up of 
BV problem?

 Formal fundamental solution.
 Wave equation. Wave fronts. Light cone in FS.
 Generating functional for collinear parton distribution functions.
 The “fire ball” in QCD, diagonals 



  

Ansatz choice for functionals

 The exp* poly ansatz
 The ansatz for expansion coefficients
 Functionals in Riemannian geometry: formal solutions. 
 Difficulties: ambiguity in the definition, the meaning of branch loci. 
 Non local Riemannian geometry
 FPDE translates into ordinary PDE 
 Infinitely generated fundamental group.
 Ends of complexes:  Weisberger, Yu, Ye, Ranicki, Quinn, 

Friedmann



  

Functional PDEs on spaces

 Spaces: Imm, Emb, Jet, Sobolev with constructive measures. 
Frechet-Borel measure theory

 Sequence spaces. Series solutions on the Hilbert space
 Tangent bundles for function manifolds 
 Topology of functional manifolds. Differential topology is 

believed to be trivial: Atiyah. But there are variants: how about 
the loop space?

 What is the analogy of Sobolev functional spaces? 
 Frechet homology theory. Simplicial story is possible – but the 

dimensions are manifolds.  



  

Local renormalization group, local 
time

 Multi-scale processes: need to define coupling in each 
channel

 Field of infrared scales at higher orders
 Tomonaga equation
 Evolution of multi-parton correlators
 The various flavors of renormalization group. Local 

renormalization group 1. many parameters.  2. partial 
integration of the field. Graph in space

Matrix form



  

Evolution on function spaces

 Multiscale processes: how to fix coupling. Related to factorization: 
how many diagram types to resum

 Local renormalization group
 Local time
 Partial integration over infinite graph spaces
 There is “homotopy” between interaction picture and pure field 

representations
 Property T, mass gap, spectrum of bound states
 Bound states and strata in function spaces
 Integral over a unit ball in a semi-norm is a function of RG scales



  

Conclusions

 Lots of interesting problems. Conceptual work: definitions 
are missing. QFT is somewhat mysterious: we are in the 
unique position to use the ambiguity

 Facts: 1. evolution takes place in a functional space 2. 
Space time is an effective notion 3. Topological manifolds 
are a part of calculations(implicitly)

 Questions: what exactly is the FS? What dimension 
theory to use?

 QCD- Riemannian field theory F[g]. Gromov Cheeger  
moduli
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Recursive equations for families of 
diagrams

 Schwinger Dyson equations



  

Radiative corrections: m/M small

 Summation of diagrams. 
 Bethe Salpeter equation
 Integral form of it
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