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Other channels #
1. can be integrated out, for their threshold being much further away;#
2. contribute at subleading orders (quantum-numbers) 
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Λc
+(2595) as an S-wave resonance in πΣc channel

Width ∼ 2MeV — narrow#
≤ 4 MeV above threshold — extremely shallow



S-wave resonances 
— from the perspective of potential models

k

naturally sized r

unnaturally large r 

f (0) =
1

� 1
a + r

2k
2 � ik

Motion of poles when potential-strength 

tuned#

Large value of a — close to threshold (shallow)#

Large value of r — narrow resonance (as 

opposed to broad resonance)#

Two fine-tunings seem to be needed for a 

potential model to form a narrow, shallow S-

wave resonance.

B.S. pole

Virtual



Chiral Lagrangian for nuclear physics

  

chiral symmetry of QCD

Q: Generic external 
momentum

~ 1GeV

Few GeV

~ 100MeV

Perturbative QCDPerturbative QCD

lattice QCDlattice QCD

chiral EFTchiral EFT

Mhi
Non-Goldstone mesons mass ¾ (?), 
½ ... 

Nucleon mass mN 

D.o.f.s

●  spontaneously broken
●  approximate mq >  0 

Nucleons

Pions

chiral Lagrangian

Chiral effective field theory: A primer
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Power counting for pion loops (HBChPT)
Nucleon propagator — 1/Q 

Pion propagator — 1/Q2 

Loop integral — Q4/(16π2) 

A vertex from          — Qν  

A pion loop brings a suppression factor of  

L(⌫)

Cutoff independence assumed → counting free of Λ

Two-pion exchanges of nuclear forces

✓
Q

4⇡f⇡
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Weinberg-Tomozawa

Non-linear realization of chiral symmetry → fixed coupling
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Power counting for nuclear forces in chiral e↵ective field theory 5

Fig. 1. One of the one-loop diagram contributing to pion-nucleon scattering. The solid (dashed)

line represents the nucleon (pion).

Both vertexes in Fig. 1 are the famous Weinberg-Tomozawa term, the second
operator in Lagrangian (1), contributing a factor of Q/f2

⇡ . The pion propagator
scales as Q�2. With the nucleon mass subtracted o↵ from the zeroth component of
4-momenta, as conventionally done in heavy-baryon formalism, the nucleon external
momentum is of (Q2/mN , Q). But the momentum following through the nucleon
internal line is of (Q,Q), because the external pion line tends to inject an energy
at least of m⇡. So the nucleon internal line is of the size Q�1. The integration
volume contributes a factor of Q4/(16⇡2). The numerical coe�cient 16⇡2 usually
accompanies an integral in which the pion is relativistic, l

0

⇠ |~l |. Its value should
be taken with a grain of salt, for it comes from observations rather than rigorous
deductions. In conclusion, the size of the diagram is estimated as

Q

f2

⇡

✓
Q

4⇡f⇡

◆
2

. (2)

In the loop integral, there may be other momentum modes of l causing one of
the two propagators (or both) to be enhanced, compared with the factor of Q�2 for
the pion and Q�1 for the nucleon. However, these modes are so special that they
reside only in a small integration volume. For instance, when l

0

is near the energy
of the incoming pion k

0

, the nucleon propagator is very close to its mass shell so
that it is of the size (Q2/mN )�1. But this enhancement of the nucleon propagator
only happens to a small window of the integration volume |l

0

� k
0

| ⇠ Q2/mN , so
power counting (2) is not altered.

By comparison, special kinematic regions of external momenta often call for
more cautions. For instance, power counting in Fig. 1 needs to be modified when the
incoming pion is nonrelativistic in the sense that its 3-momentum is much smaller
than the pion mass, Q ⌧ m⇡. For a recent interesting application of nonrelativistic
pion in pion-baryon processes, see Ref. 38.

2.2. Two-nucleon processes

Processes involving two nonrelativistic nucleons, as is the case in low-energy nuclear
physics, present more dramatic changes in Q-calculus. Figure 2 shows a generic loop
diagram with two-nucleon intermediate states. Denoting the 4-momentum of one of
the nucleon internal lines as (E/2 + l

0

,~l ), with E being the center-of-mass energy,
we can write schematically the loop integral as

Z
d4l

(2⇡)4
· · · i

E
2

+ l
0

� ~l2

2mN

i
E
2

� l
0

� ~l2

2mN

· · · (3)

S-wave interaction of pi-Sigma system#

But a pion loop always suppressed by                     (Weinberg, ’79)#

It’s unlikely that W.T. alone can generate a S-wave resonance#

“Subleading”            highly enhanced —- fine-tuning  
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Generated by Weinberg-Tomozawa?

⇡⇡⌃⌃



What we can do with ChPT then?

Q: With chiral symmetry, are double fine-tuning still needed as in 

potential models? 
A: No, a single fine-tuning is sufficient#

Q: mutil pions + Σc ? 
A: likely to form more resonances



Explicit field of the excited baryon 

Ψ: Λc+(2595) #

h:  O(1)

Ψ coupled to the S wave → time derivative on π, required by chiral 
symmetry (crucial)#

Nonrelativistic pion → coupling ∝ mπ  !#

Mass splitting Δ ∼ mπ → near threshold

Two-flavor chiral symmetry su�ces to demonstrate the points I will make. Regardless of

isospin of the S-wave resonance, the lowest-order coupling of the resonance to pion-baryon

must involve one time derivative on the pion field. Ensured by chiral symmetry and parity

conservation, this is the single most important feature of an S-wave baryon resonance, and

it is the foundation of what to be developed here. The heavy-baryon Lagrangian terms with

Weinberg’s chiral index [17, 18] ⌫ = 0 are
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Here  (⌃) is the field that annihilates ⇤+
c (2595) [⌃c(2455)] and g⌃ the axial coupling of

⌃c(2455). 1

Now we turn to construction of the S-wave amplitude for ⇡⌃c elastic scattering. When

m⇡ is near m?
⇡, either below or above, ⇤+

c (2595) remains a near-threshold phenomenon and

the pion is nonrelativistic. Therefore, k and the energy shift of the resonance from threshold

� ⌘ � � m⇡ are both much smaller than m⇡: k/m⇡ ⌧ 1 and |�|/m⇡ ⌧ 1. The recoil

e↵ects of the pion will be systematically included, whereas those of the baryon will not be

considered here, due to its much larger mass.

With the incoming (outgoing) 4-momentum of ⇡ denoted by kµ (k0
µ) and that of ⌃c by pµ

(p0µ), I write the isoscalar S-wave ⇡⌃c “potentials” as the following two pieces: The s-channel

exchange of  is

vs =
h2

f 2
⇡

k0k0
0

k0 + p0 �� =
h2m2

⇡

f 2
⇡(E � �)


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where E is the CM energy, and the Weinberg-Tomozawa (WT) term

vWT =
3(k0 + k0

0)

2f 2
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=
3m⇡

f 2
⇡


1 +O
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The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

1 The D-meson-nucleon system can be integrated out here because DN would have to be quite o↵-shell to

be relevant, with the CM momentum around
p
2µ�DN ' 510 MeV, where µ is the reduced mass of DN

and �DN is the CM energy di↵erence between ⇤+
c (2595) and DN threshold.
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where E is the CM energy, and the Weinberg-Tomozawa (WT) term

vWT =
3(k0 + k0

0)

2f 2
⇡

=
3m⇡

f 2
⇡


1 +O

✓
Q2

m2
⇡

◆�
. (4)

The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

1 The D-meson-nucleon system can be integrated out here because DN would have to be quite o↵-shell to

be relevant, with the CM momentum around
p
2µ�DN ' 510 MeV, where µ is the reduced mass of DN

and �DN is the CM energy di↵erence between ⇤+
c (2595) and DN threshold.
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# of flavor of pions



r can be quite large when #

a single fine-tuning                         makes both a and r large

FIG. 1: Once iterated s-channel exchange of  in ⇡⌃c scattering. The solid, dashed, and double

lines represent ⌃c, ⇡, and  , respectively.

included, those of the baryon will not be for simplicity, due to its much larger mass.
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The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

Resummation of vs will give rise to the desired nonperturbative physics, but an argument

for its necessity in the power-counting language will help understand theoretical uncertainties

of the EFT-based conclusions [6, 7]. Figure 1 shows two insertions of vs, connected by a

pion-baryon loop. When E � � in the denominator of vs is as small as the  self-energy, all

diagrams with serial insertions of vs are equally important, hence the resummation.

Let us first power count the nonrelativistic pion-baryon loop, shown as part of Fig. 1.

The fact that the pion is nonrelativistic modifies in several aspects the standard power

counting [5]. The 3-momentum of the pion internal line is of Q and the energy m⇡+Q2/m⇡;

therefore, the pion propagator is counted as 1/Q2. The baryon propagator is static, and

the energy flowing through it is of the same order as the kinetic energy of the pion. So, the

baryon propagator is counted as m⇡/Q2. With the internal pion 4-momentum denoted by

l, the integration volume
R
d4l contributes a factor ⇠ Q5/m⇡, in which

R
dl0 ⇠ Q2/m⇡ and

R
d3l ⇠ Q3. In addition, the numerical factor coming out of a nonrelativistic loop is normally

1/4⇡, compared with that of a relativistic loop— 1/16⇡2. In conclusion, a nonrelativistic

pion-baryon loop contributes a factor of Q/4⇡.

Together with the coupling of  to ⇡⌃c, the LO self-energy of  will be⇠ m2
⇡Q/(

p
4⇡f⇡)2,

in contrast with ⇠ Q3/(4⇡f⇡)2 in the case of a relativistic pion. The appearance of
p
4⇡f⇡ =

4
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Theu-channelexchangesof⌃or willnotbeconsideredbecausetheyinvolvetwopowers

ofQ,thussmallerthanvWTbyO(Q2/m2
⇡),whereQdenotesgenericallyexternalmomenta.
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→ Chiral symmetry helps Λc+(2595) remain narrow

r = � 4⇡f2
⇡

h2m3
⇡

⇠
✓
328MeV

140MeV

◆2 1

140MeV



Breakdown of universality

Universality : observables expected to scale w/ #

Additional large length scale of r → universality relations break down 
sooner than expected

m?
⇡ �m⇡ ! 0

✏ =

✓
m⇡p
4⇡f⇡

◆2

and its expansion around m?
⇡ at LO is found to be
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Again, � is easily seen at LO to be equal to m?
⇡ = m⇡.

In the immediate neighborhood ofm?
⇡, many dimensionful quantities are expected to scale

only with (m⇡ �m?
⇡), a rule known as universality [12]. The universality relation, B / �2

(see, for example, Ref. [4]), is recovered for �/(✏2m⇡) ! 0�:
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With the assumption h = O(1), an important revelation here is the validity scope of uni-

versality is extremely small if m?
⇡ ⌧ p

4⇡f⇡:
����
m⇡ �m?

⇡

m⇡

����⌧ [✏(�)]2 =

✓
�

328MeV

◆4

. (12)

The surprisingly small validity range of universality has everything to do with the emer-

gence of a second large length scale in addition to the scattering length: the e↵ective range.

Note that considerations of universality alone cannot capture the significance of f⇡— the

mass scale intimately related to chiral symmetry and its spontaneous breaking.

To know better the uncertainty of the LO calculations and how reliable the conclusions

thus drawn, we compute the subleading corrections. They are partly driven by the WT

term, which brings no free parameters more than h/f⇡, �, and m⇡. Other next-to-leading

order (NLO) contributions include the recoil e↵ects of the pion. The sum of these NLO

contributions can too be cast into the form of the e↵ective range expansion,
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where P is the shape parameter, �1 and r1 the corrections to the inverse scattering length

and the e↵ective range. ✏/4⇡ = (m⇡/4⇡f⇡)2 is the more usual ChPT expansion parameter
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The phase shifts

FIG. 2: (Color online) The LO phase shifts as functions of k/(h2✏m⇡), with various values of

�̃. From the top down, the solid lines are the phase shifts plotted with �̃ = �0.2, 0.2, and 3,

respectively. The inflection point on �̃ = 3 is marked out with a diamond. The dashed lines

separate the three di↵erent regions defined in the text: the boundary between “I” and “II” is the

phase shift with �̃ = 0 and the one between “II” and “III” with �̃ = 2/3.

S-wave bound state weakly coupled to other decay channels. (For instance, in many of its

theoretical descriptions X(3872) is constructed as a bound state of D0D̄⇤0 + D̄0D⇤0 and it

decays into, among others, D0D̄0⇡ [9, 10, 17–19].) The construction in the present paper

does not reject this possibility, for when � < 0 the excited baryon indeed corresponds to

a shallow bound state, but it also indicates that a shallow two-body resonance is equally

possible, with a small tweak of �. One would have to decide on a case-by-case basis how

important other decays are. In the particular case of ⇤+
c (2595), the decay of ⌃c into ⇡⇤+

c

contributes a two-loop correction to the  self-energy, and it will appears as a subleading

correction to the scattering length of ⇡⌃c elastic scattering.

Moreover, Eq. (8) shows that chiral symmetry facilitates the resonance to be near thresh-

old only when m⇡ ⌧ p
4⇡f⇡, an insight obtained by accounting for the fact that the pion is

nonrelativistic. When � &
p
4⇡f⇡ (but still within the validity range of ChPT), the e↵ective

range is more likely naturally sized; therefore, other mechanisms, like three-body decays,

are more favored than two-body interactions alone to generate a near-threshold resonance.

Bound state In region I, the phase shifts are dominated by the shallow bound state pole.

Unlike the phase shifts, the binding energy is more directly linked to lattice calculations,

8
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FIG. 1: Once iterated s-channel exchange of  in ⇡⌃c scattering. The solid, dashed, and double

lines represent ⌃c, ⇡, and  , respectively.

included, those of the baryon will not be for simplicity, due to its much larger mass.

With the incoming (outgoing) 4-momentum of ⇡ denoted by k (k0) while that of ⌃c by p

(p0), I write the isoscalar S-wave ⇡⌃c “potentials” as the following two pieces: The s-channel

exchange of  is

vs =
h2

f 2
⇡

k0k0
0

k0 + p0 �� =
h2m2

⇡

f 2
⇡(E � �)


1 +O

✓
Q2

m2
⇡

◆�
, (3)

where E is the CM energy, and the Weinberg-Tomozawa (WT) term

vWT =
3(k0 + k0

0)

2f 2
⇡

=
3m⇡

f 2
⇡


1 +O

✓
Q2

m2
⇡

◆�
. (4)

The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

Resummation of vs will give rise to the desired nonperturbative physics, but an argument

for its necessity in the power-counting language will help understand theoretical uncertainties

of the EFT-based conclusions [6, 7]. Figure 1 shows two insertions of vs, connected by a

pion-baryon loop. When E � � in the denominator of vs is as small as the  self-energy, all

diagrams with serial insertions of vs are equally important, hence the resummation.

Let us first power count the nonrelativistic pion-baryon loop, shown as part of Fig. 1.

The fact that the pion is nonrelativistic modifies in several aspects the standard power

counting [5]. The 3-momentum of the pion internal line is of Q and the energy m⇡+Q2/m⇡;

therefore, the pion propagator is counted as 1/Q2. The baryon propagator is static, and

the energy flowing through it is of the same order as the kinetic energy of the pion. So, the

baryon propagator is counted as m⇡/Q2. With the internal pion 4-momentum denoted by

l, the integration volume
R
d4l contributes a factor ⇠ Q5/m⇡, in which

R
dl0 ⇠ Q2/m⇡ and

R
d3l ⇠ Q3. In addition, the numerical factor coming out of a nonrelativistic loop is normally

1/4⇡, compared with that of a relativistic loop— 1/16⇡2. In conclusion, a nonrelativistic

pion-baryon loop contributes a factor of Q/4⇡.

Together with the coupling of  to ⇡⌃c, the LO self-energy of  will be⇠ m2
⇡Q/(

p
4⇡f⇡)2,

in contrast with ⇠ Q3/(4⇡f⇡)2 in the case of a relativistic pion. The appearance of
p
4⇡f⇡ =

4
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Σc

π

Two-flavor chiral symmetry su�ces to demonstrate the points I will make. Regardless of

isospin of the S-wave resonance, the lowest-order coupling of the resonance to pion-baryon

must involve one time derivative on the pion field. Ensured by chiral symmetry and parity

conservation, this is the single most important feature of an S-wave baryon resonance, and

it is the foundation of what to be developed here. The heavy-baryon Lagrangian terms with

Weinberg’s chiral index [17, 18] ⌫ = 0 are

L(0) = ⌃a†

i@0�ab +

i

f 2
⇡

�
⇡a⇡̇b � ⇡b⇡̇a

��
⌃b

+ † (i@0 ��) + i
g⌃
f⇡

✏abc⌃
a†~� · ~r⇡b⌃c

+
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3f⇡

�
⌃a†⇡̇a + h.c.

�
+ · · ·

(2)

Here  (⌃) is the field that annihilates ⇤+
c (2595) [⌃c(2455)] and g⌃ the axial coupling of

⌃c(2455). 1

Now we turn to construction of the S-wave amplitude for ⇡⌃c elastic scattering. When

m⇡ is near m?
⇡, either below or above, ⇤+

c (2595) remains a near-threshold phenomenon and

the pion is nonrelativistic. Therefore, k and the energy shift of the resonance from threshold

� ⌘ � � m⇡ are both much smaller than m⇡: k/m⇡ ⌧ 1 and |�|/m⇡ ⌧ 1. The recoil

e↵ects of the pion will be systematically included, whereas those of the baryon will not be

considered here, due to its much larger mass.

With the incoming (outgoing) 4-momentum of ⇡ denoted by kµ (k0
µ) and that of ⌃c by pµ

(p0µ), I write the isoscalar S-wave ⇡⌃c “potentials” as the following two pieces: The s-channel

exchange of  is

vs =
h2

f 2
⇡

k0k0
0

k0 + p0 �� =
h2m2

⇡

f 2
⇡(E � �)


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, (3)

where E is the CM energy, and the Weinberg-Tomozawa (WT) term

vWT =
3(k0 + k0

0)

2f 2
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=
3m⇡

f 2
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
1 +O
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◆�
. (4)

The u-channel exchanges of ⌃ or  will not be considered because they involve two powers

of Q, thus smaller than vWT by O(Q2/m2
⇡), where Q denotes generically external momenta.

1 The D-meson-nucleon system can be integrated out here because DN would have to be quite o↵-shell to

be relevant, with the CM momentum around
p
2µ�DN ' 510 MeV, where µ is the reduced mass of DN

and �DN is the CM energy di↵erence between ⇤+
c (2595) and DN threshold.

4

Two pions + Σc

ππ interactions are subleading#

πΣc “potential” is energy-dependent → total binding energy is not 
simple addition of individual pions#

Searching 3-body states by finding poles of πΛc+(2595) scattering 
amplitude



+=

= + + …

πΛc
+(2595) scattering amplitude

t(q;E,B2) =
8⇡

3

|r|
q2 + 2m⇡B2

+
2

3⇡

Z
dl

l2

l2 + q2 � 2m⇡E � i0

t(l;E,B2)

� 1
a � |r|

2 (2m⇡E � l2) +
p
l2 � 2m⇡E � i0

q : pion momentum#

B2 : πΣc binding energy#

 E : total energy
Λc

+(2765) ?
quantum numbers uncertain



Summary

Chiral symmetry ensures an S-wave pion-baryon to remain narrow 
close to threshold#

Large value taken by the effective range, ruining universality 
relations #

2 pions + Σc


