

# Higgs to di-photon analysis and photon energy reconstruction

WANG Feng<sup>1 2</sup> Jianhuan Xiang<sup>3</sup> RUAN Manqi<sup>1</sup> LI Gang<sup>1</sup> ZHANG Zhenyu<sup>2</sup> Young-Kee Kim<sup>3</sup>

1 IHEP
2 Wuhan University
3 University of Chicago

26/03/2016



- From the Higgs to CEPC
- Analysis of Higgs to di-photon with fast simulation
- Photon reconstruction with full simulation
- Summary and plan

# Stand model & Higgs



Looking for Higgs is a main objective at (LEP, Tevatron, LHC).

Higgs explants origin of mass, and is regarded as "the God particle".



#### **Nobel Prize in Physics in 2013**



The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider" CEPC

#### **Circle Electron Positron Collider**



5

#### **Higgs Boson Decay**



# Signal

#### Information

Integrated luminosity: 5 ab<sup>-1</sup>

Generator: Whizard 1.95

■  $ZH \rightarrow (\nu\nu, II, qq) \gamma\gamma$  event:



# Background

Main background:  $e^+e^- \rightarrow (q\overline{q}, v\overline{v}, l\overline{l})\gamma\gamma$  $e_1 \longrightarrow e_1 \longrightarrow$ 

other background: 
$$e^+e^- \rightarrow ww, zz$$

### Analysis

#### Signal

large photon energy

- the largest two-photon invariant mass
- Background
  - almost along the beam direction
  - low transverse momentum

# Two final state objects



### Cut chain

| Beam    | without pol. | Events |        |        |        |
|---------|--------------|--------|--------|--------|--------|
| Channel | Generate     | cut1   | cut2   | cut3   | cut4   |
| nnH_aa  | Efficiency   | 100%   | 82.94% | 61.22% | 57.45% |
| nnH_aa  | 557          | 557    | 462    | 341    | 320    |
| nnaa    | 1276400      | 401626 | 105008 | 16182  | 13231  |

Cut1:
$$E_{\gamma} > 35GeV$$
Cut3: $\begin{cases} P_{Tlow} > 48GeV \\ P_{Thigh} > 37GeV \end{cases}$ 

Cut2:  $\left|\cos\theta_{p}\right| < 0.84$  Cut4:  $M_{reco} < 110 GeV$ 

# Four final state objects



Kinematic fitting

In four final state objects channel, kinematic fitting are used to improve the performance.

#### Cut chain

| Beam    | without pol. | Events  |        |        |        |        |        |
|---------|--------------|---------|--------|--------|--------|--------|--------|
| Channel | Generate     | cut1    | cut2   | cut3   | cut4   | cut5   | cut6   |
| qqH_aa  | Efficiency   | 100%    | 88.38% | 74.94% | 53.75% | 34.38% | 34.38% |
| qqH_aa  | 1652         | 1652    | 1460   | 1238   | 888    | 568    | 568    |
| qqaa    | 11011914     | 2027271 | 803856 | 228018 | 93878  | 24390  | 19184  |
| ww      | 42455430     | 46318   | 20339  | 6616   | 17     | 0      | 0      |
| ZZ      | 5805561      | 15716   | 2913   | 990    | 51     | 17     | 11     |
| wworzz  | 19700221     | 18953   | 8723   | 3630   | 14     | 14     | 14     |

 **cut2=**  $|\cos \theta_p| < 0.9$ **cut4=**  $85 GeV < M_{reco} < 100 GeV$ 

**cut6=**  $_{130GeV < E_{\gamma 1} + E_{\gamma 2} < 150GeV}$ 

# Cut and fit

#### Cut

cut chain optimized to maximize signal to background ratio  $\frac{S}{\sqrt{S+B}}$  efficiency for

- $vvh_{\gamma\gamma}$  channel: 54.5%
- qqh\_yy channel: 34.3%
- $\mu\muh_{\gamma\gamma}$  channel: 42.2%
- $\tau\tau h_{\gamma\gamma}$  channel: 41.9%

#### Fit

Gaussian function for sig Polynomial for bkg

# Fast simulation result



| Expected event yields for                             | signal and backgrou                                                                                                                                                                                                                                                                                                                                                                                  | nds in $H \to \gamma \gamma$ channel,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | normalized to 5 ab <sup>-1</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | $\frac{\delta(E)}{E} = \frac{10\%}{\sqrt{(E)}} \oplus 1\%$                                                                                                                                                                                                                                                                                                                                           | $\frac{\delta(E)}{E} = \frac{16\%}{\sqrt{(E)}} \oplus 1\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{V(E)}{E} = \frac{20\%}{\sqrt{(E)}} \oplus 1\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Signal/efficiency                                     | 62 ± 18/42.2%                                                                                                                                                                                                                                                                                                                                                                                        | 62 ± 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59 ± 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| background                                            | 832 ± 33                                                                                                                                                                                                                                                                                                                                                                                             | 831 ± 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 826 ± 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\delta(Br \times \sigma)/(Br \times \sigma)$         | 29.03%                                                                                                                                                                                                                                                                                                                                                                                               | 30.64%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32.20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Signal/efficiency                                     | 58 ± 18/41.9%                                                                                                                                                                                                                                                                                                                                                                                        | 56 ± 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54 ± 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| background                                            | $760 \pm 32$                                                                                                                                                                                                                                                                                                                                                                                         | 757 ± 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 762 ± 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{\delta(Br \times \sigma)}{(Br \times \sigma)}$ | 31.03%                                                                                                                                                                                                                                                                                                                                                                                               | 32.14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| signal                                                | 334 ± 40/57.5%                                                                                                                                                                                                                                                                                                                                                                                       | $339 \pm 46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 342 ± 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| background                                            | $7059 \pm 91$                                                                                                                                                                                                                                                                                                                                                                                        | 7053 ± 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7047 ± 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{\delta(Br \times \sigma)}{(Br \times \sigma)}$ | 11.98%                                                                                                                                                                                                                                                                                                                                                                                               | 13.56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| signal                                                | 594 ± 67/34.3%                                                                                                                                                                                                                                                                                                                                                                                       | 582 ± 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 575 ± 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| background                                            | 13053 ± 130                                                                                                                                                                                                                                                                                                                                                                                          | 12831 ± 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12566 ± 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{\delta(Br \times \sigma)}{(Br \times \sigma)}$ | 11.28%                                                                                                                                                                                                                                                                                                                                                                                               | 14.26%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\delta(Br \times \sigma)/(Br \times \sigma)$         | 7.7%                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       | Expected event yields for<br>Signal/efficiency<br>background<br>$\delta(Br \times \sigma)/(Br \times \sigma)$<br>Signal/efficiency<br>background<br>$\delta(Br \times \sigma)/(Br \times \sigma)$<br>signal<br>background<br>$\delta(Br \times \sigma)/(Br \times \sigma)$<br>Signal<br>background<br>$\delta(Br \times \sigma)/(Br \times \sigma)$<br>$\delta(Br \times \sigma)/(Br \times \sigma)$ | Expected event yields for signal and backgrou $\frac{\delta(E)}{E} = \frac{10\%}{\sqrt{(E)}} \oplus 1\%$ Signal/efficiency $62 \pm 18/42.2\%$ background $832 \pm 33$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $29.03\%$ Signal/efficiency $58 \pm 18/41.9\%$ background $760 \pm 32$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $31.03\%$ signal $334 \pm 40/57.5\%$ background $7059 \pm 91$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $11.98\%$ signal $594 \pm 67/34.3\%$ background $13053 \pm 130$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $11.28\%$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $7.7\%$ | Expected event yields for signal and backgrounds in $H \rightarrow \gamma\gamma$ channel, $\frac{\delta(E)}{E} = \frac{10\%}{\sqrt{(E)}} \oplus 1\%$ $\frac{\delta(E)}{E} = \frac{16\%}{\sqrt{(E)}} \oplus 1\%$ Signal/efficiency $62 \pm 18/42.2\%$ $62 \pm 19$ background $832 \pm 33$ $831 \pm 34$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $29.03\%$ $30.64\%$ Signal/efficiency $58 \pm 18/41.9\%$ $56 \pm 18$ background $760 \pm 32$ $757 \pm 32$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $31.03\%$ $32.14\%$ signal $334 \pm 40/57.5\%$ $339 \pm 46$ background $7059 \pm 91$ $7053 \pm 94$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $11.98\%$ $13.56\%$ signal $594 \pm 67/34.3\%$ $582 \pm 83$ background $13053 \pm 130$ $12831 \pm 138$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $11.28\%$ $14.26\%$ $\delta(Br \times \sigma)/(Br \times \sigma)$ $7.7\%$ $9.0\%$ |

A relative precision of 9.0% can be obtained

15

13

#### Fast simulation result

#### $\delta(Br \times \sigma)/Br \times \sigma vs \delta E/E$



# Photon reconstruction with full simulation

- 1.Photon energy estimator
- 2.Photon energy estimator correction according to Ecal geometry
- 3.Photon conversion



### Photon energy estimator



## Photon angular resolution correction

#### Theta & Phi Dependence





#### Photon angular resolution correction



#### Photon angular resolution correction



21

## Gamma conversion



#### Gamma conversion



# Summary & plan

# Fast simulation

**1.** A relative precision of 9.0% can be obtained for the  $\sigma$ (ZH) × BR(H-> $\gamma\gamma$ ) measurement.

**2.** By varying the stochastic term of the ECAL energy resolution, its impact on the expected precision has been evaluated.

# Photon reconstruction

- 1. Energy estimator
- 2. Energy anglur resolution correction
- 3. Gamma conversion correction

## Plan

Analysis of Higgs to di-photon with full simulation.





ZH->nn $\gamma\gamma$  : performance under the different Ecal energy resolution

| Energy resolution | $\frac{10\%}{\sqrt{E}} \oplus 1\%$ | $\frac{16\%}{\sqrt{E}} \oplus 1\%$ | $\frac{20\%}{\sqrt{E}} \oplus 1\%$ |
|-------------------|------------------------------------|------------------------------------|------------------------------------|
| Signal yield      | $334 \pm 40$                       | 339 ± 46                           | 342 ± 51                           |
| Significance      | 8.65 <i>0</i>                      | 7.11 <i>o</i>                      | $6.37\sigma$                       |
| δ(Br×σ)/Br×σ      | 11.98%                             | 13.56%                             | 14.91%                             |



ZH->qq $\gamma\gamma$  : performance under the different Ecal energy resolution

| Energy resolution | $\frac{10\%}{\sqrt{E}} \oplus 1\%$ | $\frac{16\%}{\sqrt{E}} \oplus 1\%$ | $\frac{20\%}{\sqrt{E}} \oplus 1\%$ |
|-------------------|------------------------------------|------------------------------------|------------------------------------|
| Signal yield      | 594 ± 67                           | 582 ± 87                           | 575 ± 94                           |
| Significance      | 8.14 <i>σ</i>                      | $5.90\sigma$                       | $4.87\sigma$                       |
| Precision         | 11.28%                             | 14.26%                             | 16.35%                             |



### Cut chain

| Beam v         | vithout pol. | Events |        |        |        |        |        |
|----------------|--------------|--------|--------|--------|--------|--------|--------|
| Channel        | Generate     | cut1   | cut2   | cut3   | cut4   | cut5   | cut6   |
| μμ <b>Η_aa</b> | Efficiency   | 100%   | 91.56% | 72.28% | 55.42% | 54.21% | 42.17% |
| μμ <b>Η_aa</b> | 83           | 83     | 76     | 60     | 46     | 45     | 35     |
| μμ <b>аа</b>   | 1135659      | 214725 | 66703  | 23786  | 6427   | 1884   | 1026   |

ZH->e2e2 $\gamma\gamma$  : performance under the different Ecal energy resolution

| Energy resolution              | $\frac{10\%}{\sqrt{E}} \oplus 1\%$ | $\frac{16\%}{\sqrt{E}} \oplus 1\%$ | $\frac{20\%}{\sqrt{E}} \oplus 1\%$ |
|--------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Signal yield                   | 59 ± 19                            | 61±19                              | 62 ± 18                            |
| Significance                   | $3.18\sigma$                       | 3.21 <i>σ</i>                      | $3.23\sigma$                       |
| δ <b>(Br</b> ×σ <b>)/Br</b> ×σ | 31.03%                             | 32.14%                             | 35.18%                             |



# Cut chain

| Beam v         | vithout pol. | Events |        |        |        |        |        |
|----------------|--------------|--------|--------|--------|--------|--------|--------|
| Channel        | Generate     | cut1   | cut2   | cut3   | cut4   | cut5   | cut6   |
| ττ <b>Η_aa</b> | Efficiency   | 98.67% | 89.33% | 61.33% | 48.00% | 46.67% | 41.89% |
| ττ <b>Η_aa</b> | 75(0.9)      | 74     | 67     | 46     | 36     | 35     | 31     |
| τταα           | 429975       | 146922 | 49424  | 14533  | 3562   | 1778   | 1410   |

| $cut1 = E_{\gamma} > 35 GeV$             | cut3=     | $\int 93GeV > P_{Tlow} > 30GeV$              |
|------------------------------------------|-----------|----------------------------------------------|
| $\mathbf{cut2} =  \cos \theta_p  < 0.9$  | cut4=     | $86 \text{GeV} < M_{reco} < 100 \text{GeV}$  |
| cut5= $130GeV < M_{\gamma\gamma} < 1486$ | GeV cut6= | $\left \cos\theta_{\mu\gamma}\right  < 0.99$ |

ZH->e3e3 $\gamma\gamma$  : performance under the different Ecal energy resolution

| Energy resolution              | $\frac{10\%}{\sqrt{E}} \oplus 1\%$ | $\frac{16\%}{\sqrt{E}} \oplus 1\%$ | $\frac{20\%}{\sqrt{E}} \oplus 1\%$ |
|--------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Signal yield                   | 58 ± 18                            | 56±18                              | 54 ± 19                            |
| Significance                   | 3.23σ                              | 3.21 <i>σ</i>                      | $3.18\sigma$                       |
| δ <b>(Br</b> ×σ <b>)/Br</b> ×σ | 31.03%                             | 32.14%                             | 35.18%                             |



# Feynman Diagrams for $v_{e^+}v_{e^-}aa$



Feynman Diagrams for  $v_{\mu+}v_{\mu-}aa$ 



# Feynman Diagrams for e+e-aa



# Feynman Diagrams for e+e-aa



# Feynman Diagrams for uuaa

