

At CEPC

- Higgs Run: 10 years, 1 M Higgs boson at 1 B physics events
- Z Pole Runs: 10 Billion Z boson in 1 year
- Perfect understanding of the nature of Higgs boson, precise EW measurements, probe for NP...

Higgs analysis: Status at PreCDR

26/03/2016

And now...

$\sigma(ZH)^*Br(H->bb, cc, gg)$

- Strategy: Event selection + Template fit on the b-likeness Vs c-likeness plane
- 4 independent channels: Signal & Key background are processed with Full Simulation

		Analyzer	bb	CC	gg	
	mumuH	Zhenxing, etc	0.96%	13.5%	11.6%	
			0.96%	11.0%	8.73%	
	eeH					
	tautauH					
	vvH	Lianghao, Yulei, Dikai	0.38%	3.5%	2.4%	Notes submitted
	qqH	Baiyu, Boyang, etc	0.27%	4.4%	3.0%	Notes submitted
	Comb. opti		0.21%	2.5%	1.7%	
26	Result at PreCDR		0.28%	2.2%	1.6%	

$\sigma(ZH)^*Br(H->bb, cc, gg)$

- Key points
 - MumuH: different template fit technologies need to be compared and understood
 - qqH:
 - Complex analysis:
 - Jet clustering algorithm,
 - Hard gluon emission,
 - Matching
 - Systematic control
 - EeH & tautauH: to be covered
 - All channels: distinguish between H->gg events and H->WW/ZZ->4 jets events is still challenging!

H -> WW* && H->ZZ*

- Various Final States! Any combination of leptons, missing E/P, jets...
- Processed with Full Simulation:
 - Final states with at most 2 jets
 - Lepton id, Isolate lepton finding and total momentum/energy resolution: key ingredient for these analysis
- WW*
 - Dedicated Isolation lepton finding algorithm has been developed, compared & tuned
- ZZ*
 - Tau related bakground could be largely suppressed once tau finder is more mature

H -> WW*

Table 2.8 Expected precision of the $\sigma(ee \rightarrow ZH) \times BR(H \rightarrow WW^*)$ measurement, assuming an integrated luminosity of 5 ab⁻¹.

Channel	Precision	Comment
$Z \to \mu \mu, H \to WW^* \to \ell \nu q q, \ell \ell \nu \nu$	4.9%	CEPC Full Simulation
$Z \to ee, H \to WW^* \to \ell \nu q q, \; \ell \ell \nu \nu$	7.0%	Estimated
$Z \rightarrow \nu \nu, H \rightarrow WW^* \rightarrow qqqq$	2.3%	Extrapolated from ILC result
$Z \to qq, H \to WW^* \to \ell \nu qq$	2.2%	Extrapolated from ILC result
Combined	1.5%	

Table from PreCDR

4.9% accuracy, should be updated to 4.2% at the CEPC note, which is composed Of 14.2% from IIvv channel and 4.4% of Ivqq channel.

Full Simulation analysis, performed by Libo, is applied on Z->dimuon, H->WW*->llvv channel Clean signal, tiny fraction: 0.1% of all H->WW* events.

Category	Total	Signal	Background	-	
$l_1 = e, l_2 = \mu$	105 ± 10.2	105 ± 10.2	0.0±0.0	9.8%	
$l = \mu$	58±7.6	52±7.2	6±2.4	14.6% Ir	In total
l = e	40±6.3	36±6	4±2	17.6%	7.4%
WW* full leptonic decay	203 ± 14.2	193±13.9	10 ± 3.2	17.0/0	

Table 4: Statistic error of different flavor final state and $H \to WW^* \to ll \nu \bar{\nu} (l = e, \mu)$

Improved by a factor of 2 comparing to PreCDR

$H \rightarrow WW^*$

H->ZZ*

Yuqian's Full simulation

•					
	Z->11	taus	VV	qq	
ZZ*->4q	888	444	2.64k	9.24k	
2v + 2q	508	254	1.51k	5.29k	
2l + 2q	170	85	508 -	1778	
4v	73	36	216	756	Vang Vuon'a
2l + 2v	49	24	145	508	Fast simulation
41	/ 8	4	24	86	
X + tau	120	60	356	1246	
/	/	1	1	1	1

Priority 1: isolated leptons.

Result from ini-Z to di-muon/electron: 15% comb 11.4% = 9.0% Result from ini-Z to invisible: 11% comb 13% comb 20% = 7.7%; including W fusion contribution, should increase the statistic by 18%; thus 7%

(comparing to 6.9% accuracy we achieved with Fast simulation at Pre-CDR) In total: 5.5%

Reference Num at PreCDR: 4.3% Next step: Including other channels with leptonic final states

H->di photon

- Feng & JianHuan
- Converted Photon recovery algorithm: proved to be efficient & save back ~ 10-15% of statistic: need further polishment
- Dedicated Photon Energy Estimator & Photon ID has been developed and adjusted to CEPC_v1 geometry

H->di muon

- Cui Zhenwei, (Wang Binlong)
- Test bed for event selection tuning
 - Cut based;
 - MVA-BDT based;
- Carefully designed BDT seems could largely improve the analysis result.
 Checking details

H->di tau

- Yu Dan
- Test bed for PFA
- Goal: identify not only Tau candidate but also flag the tau decay mode.
- Key to every tau-related physics channels
 - H->di tau measurement was carried on at Higgs signal only (distingulish H->di tau from H->others)
 - A simultaneous fit on log(D0) Histogram leads to a measurement of Br(H->WW) and Br(H->tautau) simultaneously

H->Exotic, leptonic

- Wang Lei
- Full Simulation analysis of H->e+e- pair
 - Uplimt set to be 0.016%, one order of magnitude better than LHC
 - Will extend this study to cover H->emu, etau, etc.

H->Exotic, hadronic

- Jiawei, Kevin, Zhenxing
- Good understanding of the Simu-Reconstruction correspondence and Promising results has been achieved with full simulation.

EW measurement

- Afb(B), Afb(tau)...
- Certainly lots more topics need to be covered in the future!

Interpretation & New observables

ShaoFeng's talk

Combination & Analysis technologies

• Yaquan's talk

Reconstruction

- Tracking
- Arbor
- PID
- Jet Clustering
- Flavor Tagging

Talks of Binsong & Bo

New Geometry

- CEPC_o2 under its way: Li Qiuyang
- New Simulation toolkit: DD4HEP, Prof Fu Chengdong

Irradiation Study

• Toward more realistic detector: Prof Xu Yin

Software & Computing

• Supplies & Logistic: Xiaomei's talk

Goal & Future

- Summarize current studies, get all the tools prepared
- Geometries are changing & Let's iterate!
- Goal:
 - Optimized detector geometry,
 - Reconstruction-analysis tool,
 - Profoundly understood performance & physics

Enjoy!

Non Higgs Topic

- EM measurements:
 - TGC (韩爽)
 - Wmass + Width
 - Neutrino generation
 - A_{FB}
- New Physics (李强)
- Systematic controls (朱凯, 白羽, 李刚)
- Reconstruction oriented
- Detector optimization
 - Calorimeter (赵航,陈石)

CEPC Higgs Analysis: Status at Aug 2015

	di-muon	di-electron	di-neutrino	di-jets	di-taus
σ(ZH)			-		
Мн					
σ(ZH)*Br(H→bb)					
σ(ZH)*Br(H→cc)					
σ(ZH)*Br(H→gg)					
σ(ZH)*Br(H→WW)					
$\sigma(ZH)^*Br(H\rightarrow ZZ)$					
σ(ZH)*Br(H→тт)					
σ(ZH)*Br(H→γγ)					
σ(ZH)*Br(H→μμ)					
σ(vvH)*Br(H→bb)	-	-		-	
Br(H→invisible)			-		
Br(H→exotic)					

Signal with CEPC Full Simulation, Bkgrd with Fast Simulation

CEPC Fast Simulation

26/03/2016

Extrapolated from ILC/FCC-ee results

27

Newly formed Working groups

H -> WW* && H->ZZ*

