Higgs Precision Combination New Physics Scales via Dim-6 Operator and Differential Distributions @ CEPC

Shao-Feng Ge

(gesf02@gmail.com)

Max-Planck-Institut für Kernphysik, Heidelberg, Germany

2016-3-26

SFG, Hong-Jian He, Rui-Qing Xiao, arXiv:1603.03385 CEPC preCDR

Higgs discovery is not just about *H* particle

Sorce Mediators

- Gauge Forces Spin-1 Gauge Bosons
- Gravity Spin-2 Graviton (Planck Scale?)
- New Force Spin-0 Higgs Boson
- Deep understanding of Mass Generation
 - Yukawa Forces Hierarchy & Mixing (Flavor Symmetries?)
 - Discrete v.s. Continuous
 - Full v.s. Residual [1104.0602, 1108.0964, 1308.6522]
 - Higgs Self-Interaction Forces h³ & h⁴ (concerns spontaneous EWSB and providing masses to all particles).

True Self-Interactions – Exactly the Same Quantum **#** (Spin & Charge

- \bullet hWW, hZZ, h $\gamma\gamma$ & hZ γ
- These new forces associated with spin-0 Higgs were Never Seen Before. Needs to test directly.

Even within SM, we are strongly motivated to quantitatively test Higgs Couplings!

Standard Model is Incomplete!

Mass Generation

- Yukawa force is Flavor-Dependent & Hierarchically Unnatural
- Higgs mass itself is Radiatively Unnatural
- Seutrino Oscillation
- Dark Matter
- Matter-Antimatter Asymmetry
- Solution Stability

Vacuum Energy & Inflation

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26

Higgs Combination, New Physics Scales & Differential Dist.

135

Higgs Factory @ 250 GeV

- Solution f(125) is SM-like \rightarrow Dream Case for Experiments!
- CEPC produces h(125) via $e^+e^- \rightarrow Zh, \nu \bar{\nu}h, e^+e^-h$
- Indirect Probe to New Physics. 5/ab with 2 detectors in $10y \rightarrow 10^{6}$ Higgs \rightarrow Relative Error $\sim 10^{-3}$.

Inputs: Event Rate \rightarrow Cross Section & BR

$\Delta M_h = \Gamma_h$	$\sigma(Zh)$	$\sigma(uar{ u}$ h	$) \times \operatorname{Br}(h)$	ightarrow bb)	
2.6 MeV 2.8%	0.5%		2.8%		
Decay Mo	ode σ	(Zh) imes Br	Br		
h ightarrow bb		0.21%	0.54%	-	
h ightarrow cc		2.5%	2.5%		
h ightarrow gg		1.7%	1.8%		
h ightarrow au au		1.2%	1.3%		
h ightarrow WW		1.4%			
h ightarrow ZZ		4.3%	4.3%		
$h ightarrow \gamma \gamma$		9.0%	9.0%		
$h ightarrow \mu \mu$		17%	17%		
$h ightarrow ext{invis}$	ible	-	0.14%	for details see of talks at this me	other eeting

SM Predictions

 $\operatorname{Br}(b\bar{b}) \operatorname{Br}(c\bar{c}) \operatorname{Br}(gg) \operatorname{Br}(\tau\bar{\tau}) \operatorname{Br}(WW) \operatorname{Br}(ZZ) \operatorname{Br}(\gamma\gamma) \operatorname{Br}(\mu\bar{\mu}) \operatorname{Br}(\operatorname{inv})$ 58.1% 2.10% 7.40% 6.64% 22.5% 2.77% 0.243% 0.023% 0 Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26 Higgs Combination, New Physics Scales & Differential Dist.

Deviation from SM by Scaling

n

Coupling

$$rac{{\cal g}_{hii}}{{\cal g}_{hii}^{
m sm}}\equiv {m \kappa_{f i}}\equiv 1+{m \delta \kappa_{f i}}\,.$$

Cross Section

$$\frac{\delta\sigma(Zh)}{\sigma(Zh)}\simeq 2\boldsymbol{\delta\kappa_{\mathsf{Z}}}\,,\qquad \frac{\delta\sigma(\nu\bar{\nu}h)}{\sigma(\nu\bar{\nu}h)}\simeq 2\boldsymbol{\delta\kappa_{\mathsf{W}}}\,.$$

Decay Width 9

$$\frac{\Gamma_{hii}}{\Gamma_{hii}^{\rm sm}} = \kappa_{\rm i}^2 , \qquad \frac{\Gamma_{\rm inv}}{\Gamma_{\rm tot}^{\rm sm}} = {\rm Br}({\rm inv}) \equiv \frac{\delta \kappa_{\rm inv}}{\delta \kappa_{\rm inv}} .$$

Branching Ratio 9

$$\mathsf{Br}_i \equiv \frac{\Gamma_i}{\Gamma_{tot}} \simeq \mathsf{Br}_i^{\mathrm{sm}} \left(1 + \sum_j \mathsf{A}_{ij} \delta \kappa_j \right) \,, \qquad \mathsf{Br}_{\mathrm{inv}} \simeq \delta \kappa_{\mathrm{inv}} \,.$$

with coefficients.

$$\mathbf{A}_{\mathbf{ij}} = 2(\delta_{\mathbf{ij}} - \mathbf{Br}^{\mathrm{sm}}_{\mathbf{j}}), \quad \mathbf{A}_{\mathbf{i},\mathbf{inv}} = -1, \quad \mathbf{A}_{\mathbf{inv},\mathbf{i}} = 0, \quad \mathbf{A}_{\mathbf{inv},\mathbf{inv}} = 1.$$

Combined Higgs Coupling Precision

Table: Precisions on measuring Higgs couplings at CEPC (250GeV, $5ab^{-1}$), in comparison with LHC (14TeV, $300fb^{-1}$), HL-LHC (14TeV, $3ab^{-1}$) and ILC (250GeV, $250fb^{-1}$)+(500GeV, $500fb^{-1}$).

Precision (%)	CE	PC	LHC	HL-LHC	ILC-250+500
κ_Z	0.249	0.249	8.5	6.3	0.50
κ_W	1.21	1.21	5.4	3.3	0.46
κ_{γ}	4.67	4.67	9.0	6.5	8.6
κ_{g}	1.55	1.55	6.9	4.8	2.0
κ_b	1.28	1.28	14.9	8.5	0.97
κ_{c}	1.76	1.76	-	_	2.6
$\kappa_{ au}$	1.39	1.39	9.5	6.5	2.0
κ_{μ}	_	8.59	-	_	-
$\mathrm{Br}_{\mathrm{inv}}$	0.135	0.135	8.0	4.0	0.52
Γ_h	2.8	2.8	_	_	_
	1		1		LHC & ILC from 1312.4974

SM Predictions

 $Br(b\bar{b})$ $Br(c\bar{c})$ Br(gg) $Br(\tau \bar{\tau})$ Br(WW)Br(ZZ) $Br(\gamma\gamma)$ $Br(\mu\bar{\mu})$ Br(inv) 58.1% 2.10% 7.40% 6.64% 22.5% 2.77% 0.243% 0.023% 0 Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26 Higgs Combination, New Physics Scales & Differential Dist.

Combined Higgs Coupling Precision

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26

Precision on Higgs Couplings

New physics appears @ high energy scale & can only be probed Indirectly

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{ij} rac{\mathbf{y}_{ij}}{\mathbf{\Lambda} \sim 10^{14} \mathrm{GeV}} (\overline{L}_i \widetilde{\mathbf{H}}) (\widetilde{\mathbf{H}}^{\dagger} L_j) + \sum_i rac{\mathbf{c}_i}{\mathbf{\Lambda}^2} \mathcal{O}_i \,.$$

SM Gauge Invariance is respected

Higgs	EW Gauge Bosons	Fermions
$\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} H ^2)^2$	$\mathcal{O}_{WW} = g^2 \mathbf{H} ^2 W^a_{\mu u} W^{a\mu u}$	$\mathcal{O}_{L}^{(3)} = (iH^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D}_{\mu}H)(\overline{\Psi}_{L}\gamma^{\mu}\sigma^{a}\Psi_{L})$
$\mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H)^2$	$\mathcal{O}_{BB} = g^2 H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{LL}^{(3)} = (\overline{\Psi}_L \gamma_\mu \sigma^a \Psi_L) (\overline{\Psi}_L \gamma^\mu \sigma^a \Psi_L)$
	${\cal O}_{\rm WB} = gg' {\sf H}^\dagger \sigma^a {\sf H} W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{L} = (iH^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} H)(\overline{\Psi}_{L} \gamma^{\mu} \Psi_{L})$
Gluon	$\mathcal{O}_{\mathrm{HW}} = ig(D^{\mu}\mathrm{H})^{\dagger}\sigma^{a}(D^{\nu}\mathrm{H})W^{a}_{\mu\nu}$	$\mathcal{O}_{R} = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu}H)(\overline{\psi}_{R}\gamma^{\mu}\psi_{R})$
$\mathcal{O}_{\mathbf{g}} = \mathbf{g}_{\mathbf{s}}^2 \mathbf{H} ^2 G^a_{\mu\nu} G^{a\mu\nu}$	$\mathcal{O}_{HB} = i g' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu \nu}$	

Existing EWPO & Future HO

Observables: EWPO (PDG14) + HO (preCDR)

Observables	Central Value	Relative Error	SM Prediction
Mz	91.1876GeV	$2.3 imes10^{-5}$	-
Mw	80.385GeV	$1.87 imes 10^{-4}$	-
G _F	$1.1663787 \times 10^{-5} \text{GeV}^{-2}$	5.14×10^{-7}	-
α	$7.2973525698 \times 10^{-3}$	3.29×10^{-10}	-
$\sigma[Zh]$	-	0.51%	-
$\sigma[\nu\bar{\nu}h]$	-	2.86%	-
$\sigma [\nu \bar{\nu} h]_{350 \text{GeV}}$	-	0.75%	-
Br[WW]	-	1.6%	22.5%
Br[ZZ]	-	4.3%	2.77%
Br[<i>bb</i>]	-	0.57%	58.1%
Br[cc]	-	2.3%	2.10%
Br[gg]	-	1.7%	7.40%
$Br[\tau \tau]$	-	1.3%	6.64%
$Br[\gamma\gamma]$	-	9.0%	0.243%
$Br[\mu\mu]$	-	17%	0.023%

Exclusion (95%) & Discovery (5σ **) Reach** 1603.03385

Sensitivities from Existing EWPO & Future HO

Enhancement from M_Z & M_W @ CEPC

Obsorvables	Relative Error						
Observables	Current	CEPC					
M _Z	$2.3 imes10^{-5}$	$5.5 imes 10^{-6} \sim 1.1 imes 10^{-5}$					
M_W	$1.9 imes10^{-4}$	$3.7 imes10^{-5}\sim 6.2 imes10^{-5}$					

Table: The M_Z and M_W @ CEPC [Z.Liang, "Z & W Physics @ CEPC"].

Scheme-Independent Analysis

$\frac{\Lambda}{\sqrt{c_i}}$ [TeV]	\mathcal{O}_H	$\mathcal{O}_{\mathcal{T}}$	\mathcal{O}_{WW}	\mathcal{O}_{BB}	$\mathcal{O}_{\textit{WB}}$	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_L	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_g
HO+EWPO	2.74	10.6	6.38	5.78	6.53	2.15	0.603	8.57	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_z$	2.74	10.7	6.38	5.78	6.54	2.15	0.603	8.61	12.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_W$	2.74	21.0	6.38	5.78	10.4	2.15	0.603	15.5	16.4	10.2	8.78	1.85	0.565	0.391	0.337	39.8
$+M_{Z,W}$	2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8

Table: Impacts of the projected M_Z and M_W measurements at CEPC on the reach of new physics scale $\Lambda/\sqrt{|c_j|}$ (in TeV) at 95% C.L. The Higgs observables (including $\sigma(\nu\bar{\nu}h)$ at 350 GeV) and the existing electroweak precision observables are always included in each row. The differences among the four rows arise from whether taking into account the measurements of M_Z and M_W or not. The second (third) row contains the measurement of $M_Z(M_W)$ alone, while the first (last) row contains none (both) of them. We mark the entries of the most significant improvements from M_Z/M_W measurements in red color.

1603.03385

Enhancement from Z-Pole Observables @ CEPC

Table: The Z-pole measurements at CEPC [Z.Liang, "Z & W Physics @ CEPC"].

Z-Pole Observables are **IMPORTANT** for New Physics Scale Probe

\mathcal{O}_H	$\mathcal{O}_{\mathcal{T}}$	\mathcal{O}_{WW}	\mathcal{O}_{BB}	\mathcal{O}_{WB}	\mathcal{O}_{HW}	\mathcal{O}_{HB}	$\mathcal{O}_{LL}^{(3)}$	$\mathcal{O}_L^{(3)}$	\mathcal{O}_L	\mathcal{O}_R	$\mathcal{O}_{L,q}^{(3)}$	$\mathcal{O}_{L,q}$	$\mathcal{O}_{R,u}$	$\mathcal{O}_{R,d}$	\mathcal{O}_{g}
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.4	18.1	10.2	8.78	1.85	0.565	0.391	0.337	39.8
2.74	23.7	6.38	5.78	11.6	2.15	0.603	17.5	18.3	10.5	8.78	1.85	0.565	0.391	0.337	39.8
2.74	24.0	8.32	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	2.08	1.62	0.391	3.97	39.8
2.74	24.0	8.33	5.80	12.2	2.15	0.603	20.7	23.0	12.5	13.0	7.90	7.89	3.55	4.05	39.8
2.74	24.0	8.54	5.80	12.2	2.15	0.603	20.7	23.4	14.4	14.0	8.63	8.62	4.88	4.71	39.8
2.74	24.0	8.75	5.80	12.3	2.15	0.603	20.7	23.7	15.8	14.9	9.21	9.21	5.59	5.17	39.8
2.74	26.3	12.6	5.93	15.3	2.15	0.603	30.2	35.2	19.8	21.6	9.21	9.21	5.59	5.17	39.8

Table: Impacts of the projected Z-pole measurements at the CEPC on the reach of new physics scale $\Lambda/\sqrt{|c_j|}$ (in TeV) at 95% C.L. For comparison, the first row of this table repeats the last row of Table ??, as our starting point of this table. For the (n + 1)-th row, the first *n* observables are taken into account. In addition, the estimated M_Z and M_W measurements at the CEPC, the Higgs observables (HO), and the existing electroweak precision observables (EWPO) are always included for each row. The entries with major enhancements of the new physics scale limit are marked in red color.

A factor of 2 enhancement from Z-Pole Observables

Sensitivity from EWPO+HO+Z-Pole

Higgs Self-Coupling

• Rescaling of the trilinear term h^3

$$\Delta {\cal L} = - rac{1}{3!} oldsymbol{\delta\kappa_{h3}} \lambda_{hhh}^{sm} h^3$$
 .

Solution Affect $\sigma(\mathsf{Zh})$ via Loop Correction

 ${\scriptstyle \checkmark}$ Constrained by $\sigma({\sf Zh})$ meansurement

$$rac{\delta\sigma(Zh)}{\sigma(Zh)}pprox \mathbf{2} imes\delta\kappa_Z + \mathbf{0.014} imes \mathbf{\delta\kappa_{h3}}\,.$$

1312.3322

Higgs Self-Coupling

CEPC preCDR

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26

Higgs CP Phase in $h \rightarrow \tau^+ \tau^-$ Decay

- ${igsim}$ LHC: h ${igsim}$ ZZ, au au
- \checkmark CEPC: h $\rightarrow au au$

$$\mathcal{L}_{h au au} \propto rac{y_{ au}}{\sqrt{2}} h ar{ au} (\cos oldsymbol{\Delta} + i \gamma_5 \sin oldsymbol{\Delta}) au \,.$$

 $\label{eq:complex}$ Complex enough to retrieve info about the au spin & Higgs CP

$$\begin{array}{l} h & \rightarrow \tau^{+} + \tau^{-} \\ & \rightarrow \rho^{+} \bar{\nu}_{\tau} + \rho^{-} \nu_{\tau} \\ & \rightarrow \pi^{+} \pi^{0} \bar{\nu}_{\tau} + \pi^{-} \pi^{0} \nu_{\tau} \end{array}$$

CP-even part $(\cos \Delta)$ in **p-wave** & **CP-odd** $(\sin \Delta)$ in **s-wave**.

- s Kinematic info of ν 's retrievable
- Hadronic decay $\tau \rightarrow \rho \nu$ fully reconstructable
- BR $(\tau \rightarrow \rho \nu) \approx 25\%$ & BR $(\rho \rightarrow \pi \pi) \approx 100\%$
- The ρ meson has narrow width \Rightarrow **On-Shell**

so $h \to \tau^+ \tau^-$: Measure τ spin perpendicular to $\vec{p_{\tau}}$

$$\begin{split} \mathcal{M}_{h \to \tau \tau} &\propto \quad |\vec{p}_{\tau^-}| \cos \Delta \frac{\chi_{1,1} + \chi_{-1,-1}}{\sqrt{2}} - i \mathcal{E}_{\tau^-} \sin \Delta \frac{\chi_{1,1} - \chi_{-1,-1}}{\sqrt{2}} \\ &\approx \quad \frac{\mathcal{E}_{\tau^-}}{\sqrt{2}} \left(\mathrm{e}^{-\mathrm{i}\Delta} \chi_{1,1} + \mathrm{e}^{+\mathrm{i}\Delta} \chi_{-1,-1} \right) \end{split}$$

$$\mathcal{M}_{ au o
ho
u} \propto \epsilon_{
ho}^* \cdot \left(\varepsilon_{-1} \sin rac{ heta}{2} - \varepsilon_0 rac{m_ au}{\sqrt{2}m_
ho} \cos rac{ heta}{2}
ight)$$

$$\mathcal{M}_{
ho
ightarrow\pi\pi}\propto\epsilon_{
ho^{-}}\cdot\left(\pmb{p}_{\pi^{-}}-\pmb{p}_{\pi^{0}}
ight)$$

- Neutrino momentum can be retrived using
 - Energy-momentum conservation
 - On-shell conditions

Higgs CP Phase in $h \rightarrow \tau^+ \tau^-$ Decay

Differential Distribution

Reconstructed Θ for various Λ

Precision Measurement @ CEPC

CEPC preCDR

1308.1094

Colliders	LHC	HL-LHC	CEPC1	CEPC5	CEPC10
$Accuracy(1\sigma)$	25°	8.0°	5.5°	2.5°	1.7°

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26

Triple Gauge Coupling vs EFT

1507.02238

Mass Eigenstate Basis

$$\begin{split} \mathcal{L}_{TGC}/g_{WWV} &\equiv i g_{1,V} \left(W^+_{\mu\nu} W^-_{\mu} V_{\nu} - W^-_{\mu\nu} W^+_{\mu} V_{\nu} \right) + i \kappa_V W^+_{\mu} W^-_{\nu} V_{\mu\nu} + \frac{i \lambda_V}{M_W^2} W^+_{\lambda\mu} W^-_{\mu\nu} V_{\nu\lambda} \\ &+ g_5^V \varepsilon_{\mu\nu\rho\sigma} \left(W^+_{\mu} \stackrel{\leftrightarrow}{\partial}_{\rho} W_{\nu} \right) V_{\sigma} - g_4^V W^+_{\mu} W^-_{\nu} \left(\partial_{\mu} V_{\nu} + \partial_{\nu} V_{\mu} \right) \\ &+ i \kappa_V W^+_{\mu} W^-_{\nu} \widetilde{V}_{\mu\nu} + \frac{i \tilde{\lambda}_V}{M_W^2} W^+_{\lambda\mu} W^-_{\mu\nu} \widetilde{V}_{\nu\lambda} \,. \end{split}$$

$$\Delta \mathbf{g}_{1,\mathsf{Z}} \equiv \mathbf{g}_{1,\mathsf{Z}} - 1, \quad \Delta \kappa_{\boldsymbol{\gamma},\mathsf{Z}} \equiv \kappa_{\boldsymbol{\gamma},\mathsf{Z}} - 1, \quad \boldsymbol{\lambda}_{\boldsymbol{\gamma}}, \quad \boldsymbol{\lambda}_{\mathsf{Z}}.$$

SILH Basis

$$\Delta \mathcal{L} = \frac{i \mathbf{g} \mathbf{c}_{W}}{2M_{W}^{2}} \left(H^{\dagger} \sigma^{i} \stackrel{\odot}{D}^{\mu} H \right) \left(D^{\nu} W_{\mu\nu} \right)^{i} + \frac{\mathbf{c}_{HW}}{M_{W}^{2}} \mathcal{O}_{HW} + \frac{\mathbf{c}_{HB}}{M_{W}^{2}} \mathcal{O}_{HB} + \frac{\mathbf{g} \mathbf{c}_{3W}}{6M_{W}^{2}} \epsilon^{ijk} W_{\mu}^{i\nu} W_{\nu}^{j\rho} W_{\rho}^{k\mu}$$

$$\begin{split} \Delta \mathbf{g}_{1,Z} &= -\frac{\mathsf{C}\mathsf{H} \mathsf{W}}{c_{\mathsf{w}}^2} \,, \qquad \Delta \kappa_{\gamma} = -(\mathsf{c}_{\mathsf{H}\mathsf{W}} + \mathsf{c}_{\mathsf{H}\mathsf{B}}) \,, \\ \Delta \kappa_{\mathsf{Z}} &= \Delta g_{1,Z} - t_{\mathsf{w}}^2 \Delta \kappa_{\gamma} \,, \qquad \lambda_{\mathsf{Z}} = \lambda_{\gamma} = -\mathsf{c}_{\mathsf{3}\mathsf{W}} \,. \end{split}$$

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26

TGC – Five-fold Differential Distributions

1507.02238

$$\frac{d\sigma(\mathbf{e}^{+}\mathbf{e}^{-}\rightarrow W^{+}W^{-}\rightarrow f_{1}\bar{f}_{2}\bar{f}_{3}f_{4})}{d\cos\theta d\cos\theta_{1}^{*}d\phi_{1}^{*}d\cos\theta_{2}^{*}d\phi_{2}^{*}} = \mathsf{BR}\frac{\beta}{32\pi s} \left(\frac{3}{8\pi}\right)^{2}_{\lambda\tau_{1}\tau_{1}^{\prime}\tau_{2}\tau_{2}^{\prime}} F_{\tau_{1}^{\prime}\tau_{2}}^{(\lambda)} F_{\tau_{1}^{\prime}\tau_{2}^{\prime}}^{(\lambda)*} \times D_{\tau_{1}\tau_{1}^{\prime}}(\theta_{1}^{*},\phi_{1}^{*})D_{\tau_{2}\tau_{2}^{\prime}}(\pi-\theta_{2}^{*},\pi+\phi_{2}^{*})$$

$$\frac{d\sigma}{d\Omega_k} = \frac{d\sigma_0}{d\Omega_k} \left[1 + \omega_i(\Omega_i)\alpha_i + \omega_{ij}(\Omega_k)\alpha_i\alpha_j \right] ,$$

where $\Omega_k = \cos \theta, \cos \theta_{1,2}^*, \phi_{1,2}^*, \alpha_i = (\Delta g_{1,Z}, \Delta \kappa_{\gamma}, \lambda_{\gamma}) \text{ or } \alpha_i = (c_{HW}, c_{HB}, c_{3W})$

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26

Triple Gauge Coupling

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26

Angular Observable in Higgsstrahlung

CP violating dim-6 operators

$$\begin{array}{cccc} \mathcal{O}_{\Phi\square} = (\Phi^{\dagger}\Phi)\square(\Phi^{\dagger}\Phi) & \mathcal{O}_{\Phi W} = (\Phi^{\dagger}\Phi)W_{\mu\nu}^{I}W^{I\mu\nu} \\ \mathcal{O}_{\Phi D} = (\Phi^{\dagger}D^{\mu}\Phi)^{*}(\Phi^{\dagger}D_{\mu}\Phi) & \mathcal{O}_{\Phi B} = (\Phi^{\dagger}\Phi)B_{\mu\nu}B^{\mu\nu} \\ \mathcal{O}_{\Phi\ell}^{(1)} = (\Phi^{\dagger}i\overset{\mathcal{O}}{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{\Phi WB} = (\Phi^{\dagger}\tau^{I}\Phi)W_{\mu\nu}^{I}B^{\mu\nu} \\ \mathcal{O}_{\Phi\ell}^{(3)} = (\Phi^{\dagger}i\overset{\mathcal{O}}{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{\Phi\widetilde{W}} = (\Phi^{\dagger}\Phi)\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu} \\ \mathcal{O}_{\Phi e} = (\Phi^{\dagger}i\overset{\mathcal{O}}{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}e) & \mathcal{O}_{\Phi\widetilde{B}} = (\Phi^{\dagger}\Phi)\widetilde{B}_{\mu\nu}B^{\mu\nu} \\ \mathcal{O}_{4L} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{\Phi\widetilde{W}B} = (\Phi^{\dagger}\tau^{I}\Phi)\widetilde{W}_{\mu\nu}^{I}B^{\mu\nu} \end{array}$$

1512.06877

7.4

Observables

$$\begin{aligned} \sigma(\mathbf{s}) & \qquad \mathcal{A}_{\theta_1} \equiv \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_1 \operatorname{sgn}(\cos(2\theta_1)) \frac{d\sigma}{d\cos\theta_1} \\ \mathcal{A}_{\phi}^{(1)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin\phi) \frac{d\sigma}{d\phi} & \qquad \mathcal{A}_{\phi}^{(2)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\sin(2\phi)) \frac{d\sigma}{d\phi} \\ \mathcal{A}_{\phi}^{(3)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos\phi) & \qquad \mathcal{A}_{\phi}^{(4)} \equiv \frac{1}{\sigma} \int_{0}^{2\pi} d\phi \operatorname{sgn}(\cos(2\phi)) \frac{d\sigma}{d\phi} \\ \mathcal{A}_{c\theta_1,c\theta_2}^{(3)} \equiv \frac{1}{\sigma} \int_{-1}^{1} d\cos\theta_1 \operatorname{sgn}(\cos\theta_1) \int_{-1}^{1} d\cos\theta_2 \operatorname{sgn}(\cos\theta_2) \frac{d^2\sigma}{d\cos\theta_1 d\cos\theta_2} \end{aligned}$$

Angular Observable in Higgsstrahlung

1512.06877

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26

Summary

- Higgs Discovery is not just New Particle, but also New Force!
 - Solution States States
 - Higgs Self-Interaction Force: Radiatively Unnatural
- New Physics motivates precision measurement of Higgs couplings
- CEPC 10⁶ Higgs
 - Precision Measurement
 - Higgs Coupling $\sim \mathcal{O}(1\%)$ Level
 - \checkmark Higgs Self-Coupling \sim 30%
 - New Physics Scales \Rightarrow Pave Road for SPPC
 - Probe indirectly to 10 TeV (40 TeV for \mathcal{O}_g) from EWPO+HO
 - 35 TeV @ Z-Pole
 - Differential Distributions
 - • Angle in $h \to \tau^+ \tau^- \to \rho^+ \rho^- \nu \bar{\nu} \to \pi^+ \pi^0 \pi^- \pi^0 \nu \bar{\nu} \Rightarrow CP \sim 2.5^\circ$
 - \checkmark Five-fold distributions in TGC \Rightarrow Error $\sim 10^{-4}$
 - Angular observable in Higgsstrahlung \Rightarrow CP violating dim-6 ${\cal O}$

Thank You!

1603.03385

Section 2017 Secti

$$\mathbf{M}_{\mathbf{Z}}^{(\mathsf{SM})} = \mathbf{M}_{\mathbf{Z}}^{(r)} \left(1 + \frac{\delta \mathbf{M}_{\mathbf{Z}}}{M_{Z}} \right), \ \mathbf{G}_{\mathbf{F}}^{(\mathsf{SM})} = \mathbf{G}_{\mathbf{F}}^{(r)} \left(1 + \frac{\delta \mathbf{G}_{\mathbf{F}}}{G_{F}} \right), \ \boldsymbol{\alpha}^{(\mathsf{SM})} = \boldsymbol{\alpha}^{(r)} \left(1 + \frac{\delta \boldsymbol{\alpha}}{\alpha} \right)$$

which can be denoted as

$$\mathbf{f^{(SM)}} \equiv \mathbf{f^{(r)}} + \delta \mathbf{f} \simeq \mathbf{f^{(r)}} \left(1 + \frac{\delta \mathbf{f}}{f}\right)$$

Observables:

$$X \equiv \mathbf{X}(\mathbf{f}^{(\mathsf{SM})}) + \overline{\delta X} = \mathbf{X}(\mathbf{f}^{(\mathsf{r})}) + X'(f)\delta\mathbf{f} + \overline{\delta X}$$

S Analytical Fit:

$$\chi^2\left(\delta \mathsf{M}_{\mathsf{Z}}, \delta \mathsf{G}_{\mathsf{F}}, \delta \boldsymbol{lpha}, rac{\mathsf{c}_{\mathsf{i}}}{\Lambda^2}
ight) = \sum_{j} \left[rac{\mathcal{O}_j^{th}\left(\delta \mathsf{M}_{\mathsf{Z}}, \delta \mathsf{G}_{\mathsf{F}}, \delta \boldsymbol{lpha}, rac{\mathsf{c}_{\mathsf{i}}}{\Lambda^2}
ight) - \mathcal{O}_j^{\mathsf{exp}}}{\Delta \mathcal{O}_j}
ight]^2$$

Analytical Linear χ^2 Fit – Definition

Observable Basis:

$$\chi^{2} = (\mathcal{O}^{th,0} + \mathcal{A}\delta\kappa - \mathcal{O}^{exp})^{\mathsf{T}}\overline{\Sigma}^{-1}(\mathcal{O}^{th,0} + \mathcal{A}\delta\kappa - \mathcal{O}^{exp}),$$

where the error matrix $\overline{\Sigma}^{-1}$ of measurements is diagonal,

$$\overline{\boldsymbol{\Sigma}}^{-1} = \mathsf{diag}\left\{\frac{1}{(\Delta \mathcal{O}_1)^2}, \, \frac{1}{(\Delta \mathcal{O}_2)^2}, \, \cdots, \, \frac{1}{(\Delta \mathcal{O}_n)^2}\right\} \, .$$

Fitting Basis:

$$\chi^2 \equiv \chi^2_{\rm min} + \delta \kappa^T \Sigma^{-1} \delta \kappa \,,$$

can be obtained by a simple matrix manipulation,

$$\boldsymbol{\Sigma}^{-1} = \boldsymbol{\mathcal{A}}^T \overline{\boldsymbol{\Sigma}}^{-1} \boldsymbol{\mathcal{A}}$$

So Data yet

$$\mathcal{O}^{th,0} = \mathcal{O}^{exp} \implies \chi^2_{\min} = 0$$

This assumption affects only χ^2_{\min} , not error matrix Σ^{-1} .

Analytical Linear χ^2 Fit – Marginalization

Marginalization

When talking about the uncertainty of a specific fitting parameter, the number quoted should be independent of any other parameters.

$$\mathbb{P}(\delta\kappa_1\cdots\hat{\delta\kappa_k}\cdots\delta\kappa_n)=\int_{-\infty}^{+\infty}\mathbb{P}(\delta\kappa_1\cdots\delta\kappa_k\cdots\delta\kappa_n)\,\mathrm{d}\delta\kappa_k\,.$$

Keep doing this until only one parameter is left.

Solution Matrix Manipulation For linear χ^2 fit, Gaussian-type integration can be replaced by matrix manipulation.

$$\widetilde{\boldsymbol{\Sigma}}_{ij}^{-1} = \boldsymbol{\Sigma}_{ij}^{-1} - \frac{\boldsymbol{\Sigma}_{ik}^{-1}\boldsymbol{\Sigma}_{jk}^{-1}}{\boldsymbol{\Sigma}_{kk}^{-1}} \cdot \underbrace{\boldsymbol{\Sigma}_{ik}^{-1}}_{\sigma_{i}} \cdot \underbrace{\boldsymbol{\Sigma}_{ik}^{\sigma_{i}}}_{\sigma_{i}} \cdot \underbrace{\boldsymbol{\Sigma}_$$

Uncertainty

Beyond SM Fitter (BSMfitter)

http://bsmfitter.hepforge.org

```
$name = "CEPC preCDR"
                                                  $name = "dim6 EW"
$author = "Shao-Feng Ge"
                                                  $author = "Shao-Feng Ge"
$email = "gesf020gmail.com"
                                                  $email = "gesf02@gmail.com"
$version = "August 20 2015"
                                                  $version = "2016-03-09 17:03:28"
observable(#sigma eeZh)<
                                                  $variables = {dGF, dMZ, dAlpha, c {H}, c {T}, c
                                                   {WW}, c {BB}, c {WB}, c {HW}, c {HB}, c@^{(3)}
  data = 1.
  @sigma = 0.005
                                                  {LL}, c@^{(3)} {L}, c {L}, c {R}, c@^{(3)} {Lq
                                                  }, c {Lq}, c {Ru}, c {Rd}, c {g}}
                                                  $separate = "yes"
observable(#sigma nnh)<
                                                  $mandatory = 3
  data = 1.
  @sigma = 0.02857
                                                  observable(#sigma eeZh)<
                                                    @prediction = 1.;
                                                    @coeff = \{ "dGF", 2,34 \}
observable(#sigma nnh2)<
                                                    @coeff = {"dMZ", 5,51}
                                                    @coeff = {"dAlpha", -0.344}
  data = 1.
  (dsigma = 0.0075)
                                                    @coeff = {"c {H}", -0.0605}
                                                    @coeff = {"c {T}", -0.206}
                                                    @coeff = {"c {WW}", 0.338}
                                                    @coeff = {"c {BB}", 0.0122}
observable(#BR hWW)<
  0data = 1.
                                                    @coeff = {"c {WB}", 0.0682}
  (dsigma = 0.016)
                                                    (acoeff = {"c {HW}}", 0.0429)
                                                    @coeff = {"c {HB}", 0.00315}
                                                    @coeff = {"c@^{(3)} {L}", 1.02}
                                                    @coeff = {"c {L}", 1.02}
observable(#BR hZZ)<
  0data = 1.
                                                    @coeff = {"c {R}", -0.755}
  (0 \text{sigma} = 0.043)
                                                   /* Latex expression for sigma eeZh:
observable(#BR hAA)<
                                                  2.34 \frac {\delta G F}{G F}
                           CEPC.exp
                                         43 1 35% dim6 EW.mod
                                                                       <m6 EW.mod
CEPC.exp
                                                                                          40 1 11%
```

Shao-Feng Ge @ CEPC Software Meeting, IHEP, 2016-3-26