Analysis of Br(H->bb,cc,gg) at neutrino channels

CIAE SHOUYANG HU, HAO LIANG

Content

- Physics motivation
- Brief review on Higgs decay (bb, cc, gg) in SM
- Simulation and event reconstruction
- Analysis step 1: pre-event selection
- Analysis step 2: MVA analysis
- Analysis step 3: template fitting
- Discussion

Physics motivation

- Large statistics + clean background = High precision.
 - Best test on Higgs physics.
 - Precision measurement of Higgs interaction with particles.

3

Basic problem in High energy physics: how many Higgs? The key method to distinguish between different Higgs models involves study of the particles interaction and exact decay process. Which can be measure and tested experimentally in particle collisions: *CEPC*.

Brief review on Higgs decay (bb, cc, gg) in SM

Higgs production in CEPC: Major Z pole: $e^-e^+ \rightarrow Z^*H \rightarrow vvH(bb,cc,gg)$ Minor WW fusion: $e^-e^+ \rightarrow W^*W^*H \rightarrow vvH(bb,cc,gg)$

Higgs decay into quarks pair:

Yukawa interaction $L_{\rm I} = -(\sqrt{2}G_F)^{1/2}m\bar{q}qH$ First order approximation: decay rate $\sim m^2(m \ll m_H)$

Higgs	decay	into	gluon	pair:
	(Quar	ks loop	os

Mode	$b\overline{b}$	$c\overline{c}$	gg	WW*	$\mu^+\mu^-$	$\tau^+\tau^-$	ZZ^*	$\gamma\gamma$	$Z\gamma$
BR (%)	57.8	2.7	8.6	21.6	0.02	6.4	2.7	0.23	0.16

Total: ~70%

Simulation and event reconstruction

Simulation: *ilcsoft*

Reconstruction: *marlin*

Statistics: 5000fb^-1!

Higgs qq, gg π, μμ WW, ZZ, Zy, yy 11 Z boson VV qq decay Final state

5

We have many possible channels to analyze, Where is our position?

Name	Statistics	weight	Note
vvH	$5000 fb^{-1}$	1	Full simulation
$(qq, e^+e^-, \mu^+\mu^-)H$	$5000 fb^{-1}$	1	Full simulation
$ au^- au^+ H$	0	0	Not available
2fermions/4fermions	500fb^{-1}	10	Fast simulation

We have 148K signal events (bb+cc+gg)!

Analysis 1: pre-events selection

- 1. Number of particle > 20 (veto leptonic final states)
- 2. 110GeV <Total Energy <150GeV (veto hadronic final states)
- 3. Isolated electrons & isolated muons veto. (threshold energy 10GeV)
- 4. 100GeV < Invariant mass < 135GeV 70GeV < recoil mass < 125GeV (Higgs peak and Z peak)
- 5. Cuts on y12, y23, y34 (select double jets)
- 6. -0.98 < Cos(Included angle of two jets) <-0.4 (large Higgs mass)

Analysis 1: pre-events selection

Cut Definition	Sig.	qq	qqnn	qqln	nnh
Generated	16260	25M	183K	3681K	
FSClasser output	16768	25M	183K	3681K	7485
$N_{\text{PFO}(E>0.4\text{GeV})} > 20$	16748	23M	163K	3439K	4889
$110 < E_{\rm total} < 150$	14689	10M	126K	705K	3311
$P_{T} > 19$	13687	34K	116K	627K	3101
Isolation lepton veto	13429	33775	115K	327K	2537
$100 < M_{\rm inv} < 135$	12827	9506	10420	162K	2269
$70 < M_{\rm rec} < 125$	12166	7521	10045	110K	2260
$0.15 < y_{12} < 1$	12093	7405	9702	101K	2211
$y_{23} < 0.06$	10902	6644	8456	69313	1220
$y_{34} < 0.008$	10377	6504	7878	58532	519
$-0.98 < \cos(\theta_{\text{included}}^{(2\text{jets})}) < -0.4$	10284	5766	5454	34823	485
BDT > 0.04	8705	381	465	267	230
Significance	84.92				
Efficiency	53.5%				
	1. I I I I I I I I I I I I I I I I I I I	U			

Analysis 2: Multivariate analysis (MVA)

- The software: TMVA(http://tmva.sourceforge.net/)
- Analysis method: boosted decision tree (BDT)
- Input variables: N_{PFO}, P_{T,total}, M_{inv}, M_{reco}, y₁₂, y₂₃, y₃₄, θ_{2jets}. (E_{total} was not included to reduce the overfitting.)
- Optimization: maximize the statistics significance (= $S/\sqrt{S+B}$).

Analysis 2: Multivariate analysis (MVA)

Analysis 2: Multivariate analysis (MVA)

- Integral luminosity 5000fb^-1,
- Total signal Efficiency 58.5%, Significance 266
- Main non-Higgs SM backgrounds: qqln, qqnn, qq

Number	bb	cc	gg	Oth higgs	SM
before	125725	5853	17377	Didn't cal.	Didn't cal.
Efficiency	59.0%	55.8%	55.9%	Didn't cal.	Didn't cal.
Left	74191	3266	9710	3299	1556*10

Analysis 3: Template fitting

- Construct fitting variables: bb-likeliness, cc-likeliness $L_{qq} = \frac{qq \ pair}{qq \ pair + neither \ is \ q} = \frac{x_q^1 x_q^2}{x_q^1 x_q^2 + (1 - x_q^1)(1 - x_q^1)} \ (qq = bb, cc)$
- Extract the N_{br}: Maximize the likelihood (assuming the Poisson distribution in each bins) likelihood(N_{br})

 $N_{br}template_hist_{br})$

However:

▶ We would not count non-Higgs backgrounds in this work.

br=bb,cc,gg,other,sm

We would fix the vvH(others) to be the constant of its truth-value. Because we had found this could improve the precision of branching ratio for gg.

Analysis 3: Template fitting

We use ToyMC method to generate 1000 templates and 1000 data. So we have 1000 fitting results. Data size 500fb^-1, Template size 5000fb^-1.

Department of physics, CIAE

Analysis 3: Template fitting

Channel	bb	сс	99	Oth Higgs
Truth	7419.1	326.6	971.0	329.9
Mean	7419.0	325.0	969.4	330.0
RMS (fitTo)	88.1	28.4	38.8	-
RMS (ToyMC)	87.1	30.1	39.6	-
Relative error	1.23%	9.3%	4.2%	-
1/sqrt(Truth)	1.16%	5.5%	3.2%	-

Result:

- 1.No biases was found!
- ▶ 2.The precision of $H \rightarrow \overline{b}b$ branching ratio has achieve the statistics limit $\frac{1}{\sqrt{N}}$; For gg, cc, the errors are 30%-100% more than statistics limits.

What next?

- Optimize statistics significance for bb, cc, gg respectively and extract bb, cc, gg branching by three template fittings. How much improvement?
- How much background would come from $e^-e^+ \rightarrow \tau \tau H$? Will count it.
- How to improve the precision of gg if assuming the number of vvH(others) is unknown. (very hard problem we met at present.)

Thanks for your attention!

15

MVA Correlation Matrix (signal)

Department of physics, CIAE