Higgs decay to ZZ* on CEPC

Outline

- Introduction on Higgs->ZZ* channel
- Analysis:result difficult
- Next move
- Plan table
- backup

Introduction

 H->ZZ* is very important for precise measurement of Higgs properties, especially for measurement of Higgs width.

$$\Gamma_H = \frac{\Gamma_Z}{BR_Z}$$

 H->ZZ(ΓZ)<-HZZ coupling(g²_Z)<-absolute cross section of e⁺e⁻->ZH<recoil mass techniques.

Introduction

H->ZZ*:2.7%

Normalize to 5 ab⁻¹

A good tool to develop all kinds of algorithms, reconstruction, etc.

ZZ*\IniZ	Ш	taus	vv	qq
4q	888	444	2.64k	9.24k
2v+2q	508	254	1.51k	5.29k
2l+2q	170	85	508	1778
4v	73	36	216	756
2l+2v	49	24	145	508
41	8	4	24	86
X+tau	120	60	356	1246

Samples

- ZH events: Z_H->(µ+µ-)(e+e-)(vv)(qq)_inclusve, reconstructed by Arbor
- Path: /cefs/data/RecData/SIG
- Standard Model BackGround: Fast simulation
- Path: /cefs/data/stdhep/background

Algorithm

- The jet-processing package 'LCFIplus' is used in full simulation samples, while the package 'FastJet' is used in fast simulation. For both package, pseudo jets are clustered with ee_kt_algorithm, exclusively.
- Isolated lepton in is defined as a lepton dominating its neighbour cone space. The parameters are described in appendix.

Analysis

Final	Lepton	Tau	neutrin	Quark
BR	7%	3.5%	20%	70%

luminosity: 5 ab-1

ZZ*	1	taus	VV	qq
4q	888	444	2.64k	9.24k
2v+2q	508	254	1.51k	5.29k
2l+2q	170	85	508	1778
4v	73	36	216	756
2l+2v	49	24	145	〔508〕
41	8	4	24	86
X+tau	120	60	356	1246

since we treat Z and Z* as different particles, when ZZ* decay to different kinds of final states, the block spilt into two equal parts.

A promising channel: 3 kinds of final state (3fs)

ZZ*\IniZ	µ+µ⁻	e+e-
vvqq	126	126
qqvv	126	126

ZZ*\IniZ	qq
μμνν	126
ννμμ	126
eevv	126
vvee	126

Result on cut base(RA < 20%)
Needs more optimise for better result
Difficult for now

	vv
<i>µµ</i> qq	126
qqµµ	126
eeqq	126
qqee	126

ZZ*\IniZ	e+e-	µ+µ⁻
vvqq	126	126
qqvv	126	

- The main background:
- e e -> e e qq; e e -> Tau Tau qq;
- e e -> e v_eqq; e e -> ZH-> e e WW*-> e e evqq/Tauvqq
- e e -> ZH-> e e bb

	signal	ZH_bkg	sze_sl	sw_sl	zz_sl	ww_sl	sznu_sl	ww_4q	qq	
Total										
final state	214	28892	1.39E +06	107346	15627	18296	684	2520	J20 7	7574
VisEn(100,225)	213	13139	324146	99336	14634	18104	421	214	2580	
Invariant mass of 2 jets(10,100)	209	6206	285061	88486	9799	15575	156	0	20	
Invariant mass of 2 leptons(73,118)	199	5836	76623	3292	96	188	0	0	2	
npfos[14,85]	199	5047	75787	3284	94	187	0	0	2	
difference of 2 jets<55	199	4716	63292	2925	82	181	0	0	2	
Interanglr of 2 jets(0.5,3)	193	4658	52749	2915	75	181	0	0	2	
missingmass>75	105	961	2766	158	13	39	0	0	0	
VisEn<155	101	79	1626	105	4	25	0	0	0	
visible_p(18,71)	100	75	1200	100	3	25	0	0	0	
Invariant mass of 2 jets<41	97	57	1039	42	2	9	0	0	0	
leptons' P(29,65)	95	51	511	37	1	8	0	0	0	
lead_exlep_en<4	92	29	500	37	1	8	0	0	0	
abs(Costheta)<0.81	83	26	71	32	1	6	0	0	0	
mina1>0.25	81	24	66	4	1	2	0	0	0	
RrecoMass of 2 jets>134	65	19	9 12	0	0	0	0	0	0	

we can get a relative precision of 15.1% from this single channel.

	signal	ZH_bkg	sze_sl	sw_sl	zz_sl	ww_sl	sznu_sl	ww_h	qq
final_state	231	1268	1165	601	468485	113680	834	2109	925 ⁻
Missingmass(58,128)	221	865	533	533	7961	14984	477	0	35
Invariant mass of Muons is larger than that of jets	109	42	1	0	214	81	0	0	0
Invariant mass of 2 jets (13,49)	105	14	1	0	138	62	0	0	0
Invariant mass of 2 muons(60,95)	101	4	0	0	45	16	0	0	0
Interangle between jets and muons<2.3	97	4	0	0	7	7	0	0	0

- The main background:
- e⁺e⁻-> Tau⁺Tau⁻qq;
- e⁺e⁻-> vvqq;
- $e^+e^- -> \mu^{\pm}v_{\mu}qq;$
- e⁺e⁻-> ZH-> e⁺e⁻ WW*-> Tauvqq

All of these events includes Tau

ZZ*\InitZ	vv
μμqq	126
qqµµ	126
eeqq	126
qqee	126

	signal	ZH_bkg	sze_sl	sw_sl	zz_sl	ww_sl	sznu_sl	ww_h	qq
final_state	231	1268	1165	601	468485	113680	834	2109	9251
Missingmass(58,128)	221	865	533	533	7961	14984	477	0	35
Invariant mass of Muons is less than that of jets	113	823	532	533	7747	14903	477	0	35
mina1&mina2	108	485	319	395	5622	4508	192	0	19
Invariant mass of 2 jets(53,107)	105	161	256	347	4251	3662	158	0	1
Invariant mass of 2 muons(16,55)	100	13	4	0	2215	419	7	0	0
Interangle of jets and muons	88	12	1	0	116	60	7	0	0
recoil mass of 2 jets>116	87	12	1	0	69	44	7	0	0
visible_Mass(112,140)	82	3	0	0	19	8) 1	0	0

All of these events includes Tau

ZZ*\InitZ	vv
<i>µµ</i> qq	126
qqµµ	126
eeqq	126
qqee	126

we can get a relative precision of 8.6% from this single channel.

Events/(0.5GeV/c²) ZH_sig ZH_bkg sze sze zz ww sznu ww_h qq 2 2.5 3 interangle between leptons and Jets

Combine 2 leptons' 4-momentum as lepton_P, then combine the rest of particle flow objects' 4-momentum before jetclustering as jet_P. Define the inter angle between lepton_P and jet_P as angle_LJ. In order to veto the e+e->lljj events where lepton_P and jet_P are likely to be back-to-back

	signal	ZH_bkg	sze_sl	sw_sl	zz_sl	ww_sl	sznu_sl	ww_h(4q)	qq(1%)(2f)
final state	189	8632	1.39E+06	105756	15627	18296	684	2520	7574
missing-mass(58,138)	184	7136	34688	12099	7505	13850	454	3	21
Invariant mass of Muons is larger than that of jets	85	69	21763	1162	193	367	0	0	1
Invariant mass of 2 jets and 2 muons	84	33	9550	871	44	286	0	0	0
mina1>0.2	78	11	8732	258	28	85	0	0	0
mina2(0.66,2.26)	72	9	4514	176	18	53	0	0	0
recoil mass of 2 muons(108,184)	72	9	3673	168	4	36	0	0	0
Interangle of jets and muons <2.3	70	9	1904	140	4	36	0	0	0
recoil mass of 2 jets(178,227)	68	5	928	45	3	20	0	0	0
abs(Costheta)<0.81	56	4	55	41	3	14	0	0	0
visible mass(114,135)	54	4	35	27	1	9	0	0	0
missing mass (84,105)	43	2	6	11	1	1	0	0	0

• The main background:

- e⁺e⁻-> e⁺e⁻qq;
- e⁺e -> Tau⁺Tau qq;
- e⁺e⁻-> e[±]v_eqq;
- e e -> ZH-> e e WW*-> e e evqq/Tauvqq
- e e -> ZH-> e e bb

ZZ*\InitZ	vv
<i>µµ</i> qq	126
qqµµ	126
eeqq	126
qqee	126

ZZ*\InitZ	vv	
<i>µµ</i> qq	126	
qqµµ	126	
eeqq	126	
qqee	126	

	signal	ZH_bkg	sze_sl	sw_sl	zz_sl	ww_sl	sznu_sl	ww_h	qq
missing mass	88	3697	49983	2757	0	63	142	0	2
mina1&m ina2	85	3575	46431	856	0	52	54	0	0
direction of missingP	73	2727	14310	466	0	36	28	0	0
volume of jj_n	68	1818	7899	390	0	29	26	0	0

ZZ*\IniZ	e+e-	µ+µ⁻	
vvqq	126	126	
qqvv	126	126	

	signal	ZH_bkg	sze_sl	sw_sl	zz_sl	ww_sl	sznu_sl	ww_h	qq
missing mass	102	2829	0	0	5289	144	0	0	0
mina1&m ina2	100	2779	0	0	4962	77	0	0	0
direction of missingP	98	2254	0	0	2785	65	0	0	0
volume of jj_n	95	1688	0	0	2556	65	0	0	0
direction of missingP	91	1501	0	0	1806	64	0	0	0
voloum	80	804	0	0	90	53	0	0	0
Max_Min _angle	75	557	0	0	30	19	0	0	0
MissingM ass	75	498	0	0	21	16	0	0	0

H->bb:262 ww*->tauv qq:207 ->µv qq:35

All of these events includes Tau

17

select the most isolated charged particle among the particle flow objects without isolated lepton measure the inter angle between its closest neighbour and itself.

the volume of tetrahedron which is made of 2jets and missing 4 momentum

Sum up of RA on 3 kinds of final state channel

ZZ*\IniZ	µ+µ⁻	e+e-
vvqq	15.1%	11.6%
qqvv	N/A	N/A

Process	qar q	$\mu^+\mu^-$	Single Z	Single W	Bhabha
σ [fb]	50216.20	4404.69	4733.74	5144.28	25060.22
Process	WW	ZZ	ZH	Z fusion	W fusion
σ [fb]	15483.95	1033.38	212.13	0.63	6.72

	vv
<i>µµ</i> qq	11.4%
qqµµ	12.9%
eeqq	18.6%
qqee	N/A

final state	eevvqq	<i>µµ</i> vvqq
RA	10.6%	6.67%

Summery of 3fs channel

- Cut-base->TMVA
- Combine all the sub-channel
- A valid Tau finder
- Fast-simulated SM background->Full-simulated SM background
- More variables

Analysis

Final	Lepton	neutrino	Quark
BR	10%	20%	70%

ZZ*	I	taus	vv	qq
4q	888	444	2.64k	9.24k
2v+2q	508	254	1.51k	5.29k
2l+2q	170	85	508	1778
4v	73	36	216	756
2l+2v	49	24	145	508
41	8	4	24	86
X+tau	120	60	356	1246

since we treat Z and Z* as different particles, when ZZ* decay to different kinds of final states, the block spilt into two equal parts.

2jets versus 4jets

2 jets

4 Jets

Force 2 Jets Event into 4 Jets event

Force 2 Jets events into 4 Jetsevent

y23

23

Summery of 4 jets channel

$$RA = 48.5\%$$

- 2 jets from Z* ruin a lot
- More powerful tools depending CEPC environment are needed

BACKUP

ZZZ*->eevvjj

ZZZ*->µµvvjj

ZZZ*->vvµµjj

ZZZ*->vvjjµµ

BackGroup

140 RMass34

ZZZ*->vveejj

Thanks!

Yuqian

- ww_fusion
- event_display_back
- delete some specific variables
- put a table of sum up, precision, each, plot
- more readable variable name
- bigger size
- page 4 logic
- number for 4jets events