

the measurement of branch ratio's upper limit of Higgs decaying into e+e- production in e+e- collisions at \sqrt{S} =250 GeV at CEPC

Lei Wang, Qiang Li, Gang Li, Manqi Ruan, Zhenxing Chen, Kechen Wang, Binsong Ma, Daneng Yang, Zhenwei Cui, Xiaoqing Yuan

> Physics analysis group meeting Match 26th,2016

Sketch

- >universal conception
- ➤ motivation
- >discriminate varaibles to suppress background
- ➢ optimization
- >caculation of upper limit

report slides and analysis note link

Progress reports concerning the H->ee channel:

- http://indico.ihep.ac.cn/event/5098/contribution/27/material/slides/0.pptx
- http://indico.ihep.ac.cn/event/5098/contribution/40/material/slides/0.pdf
- http://indico.ihep.ac.cn/event/5098/contribution/47/material/slides/0.pdf
- http://indico.ihep.ac.cn/event/5102/contribution/12/material/slides/2.pdf
- http://indico.ihep.ac.cn/event/5102/contribution/20/material/slides/0.pdf
- http://indico.ihep.ac.cn/event/5102/contribution/34/material/slides/0.pdf
- http://indico.ihep.ac.cn/event/5102/contribution/42/material/slides/0.pdf

- http://indico.ihep.ac.cn/event/5102/contribution/48/material/slides/0.pdf
- http://indico.ihep.ac.cn/event/5102/contribution/53/material/slides/0.pdf
- http://indico.ihep.ac.cn/event/5102/contribution/67/material/slides/0.pdf
- http://indico.ihep.ac.cn/event/5102/contribution/74/material/slides/1.pdf
- http://indico.ihep.ac.cn/event/5266/contribution/12/material/slides/0.pdf
- http://indico.ihep.ac.cn/event/5546/contribution/4/material/slides/0.pdf

Analysis Note:

http://indico.ihep.ac.cn/event/5917/contribution/3/material/slides/2.pdf

universal conception and motivation

electro-weak symmetry spontanoues mechanism of standard model, standard model is not perfect(neutrino mass?asymmtriy of matter and anti-matter?)

Higgs properties is a suitable break point for new physics

CEPC is responsible for:a).research precise measurement of Higgs characteristicb).generating pretty much Higgs bosons.(Higgs factory)

>comparing to LHC:

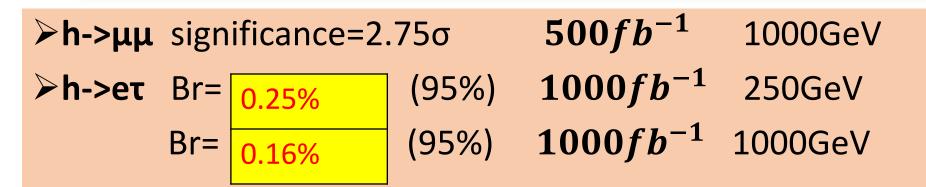
less background constituents and high higgs detecting efficiency

> comparing to ILC:

CEPC and ILC could make a crosscheck on their experimental results

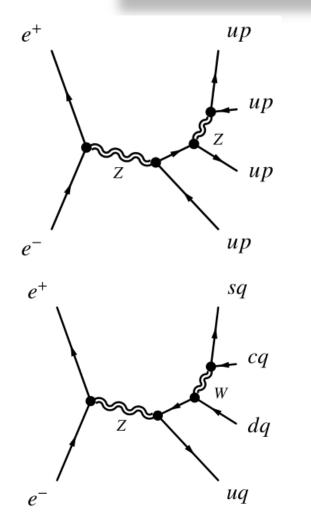
universal conception and motivation

 \geq Higgs decaying production of WW ZZ $\gamma\gamma$ have been completed in pre-CDR.

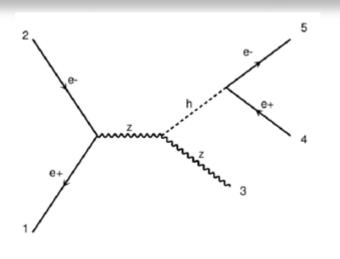

Higgs decaying model of dilepton is facilating us to probe the Yukawa couplings properties ,although it is the lightest,it is also as significant as heavy ones

For the electron and positron are the lightest charged fermions, It will demonstrate how capable the CEPC could set a strict limit to such a coupling(it shows that is is better than CMS results by one order of magnitude)evidence of physics beyond sm

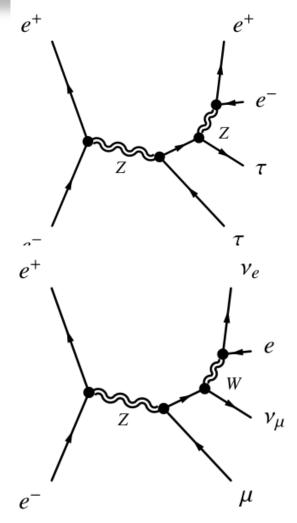
leptonic decaying channel results from CMS and ATLAS


leptonic decay channel	BR upper limit at 95%	collaboration	Journal	
h->ee	0.19%	CMS	Phys. Lett. B 744, 184	
h->μμ	0.15%	CMS	Phys. Lett. B 744, 184	
	0.16%	ATLAS	Phys. Lett. B 738, 68	
h->eµ	0.036%	CMS	CMS-PAS-HIG-14-040	
h->eτ	0.69%	CMS	CMS-PAS-HIG-14-040	
	1.04%	ATLAS	unpublished	
h->μτ	1.51%	CMS	Phys. Lett. B 749, 337	
	1.43%	ATLAS	unpublished	

leptonic decaying channel results from ILC



Here ILC generate Higgs boson through such ways:
 1.the associated production of the Higgs with a Z-boson
 2.the Higgs produced in association with neutrinos


signal and background

signal:Madgraph->Pythia->Mokka->Marlin

MC sample	parton level		
signal sample	Madgraph		
ZZ	Whizard		
WW	Whizard		
signal Z	Whizard		
signal W	Whizard		
single Z or W	Whizard		
ZZ or WW	Whizard		

bkg:Whizard->Pythia->Mokka->Marlin

electron PID requirement

➢ for the electron reconstruction, we use PID=11, which

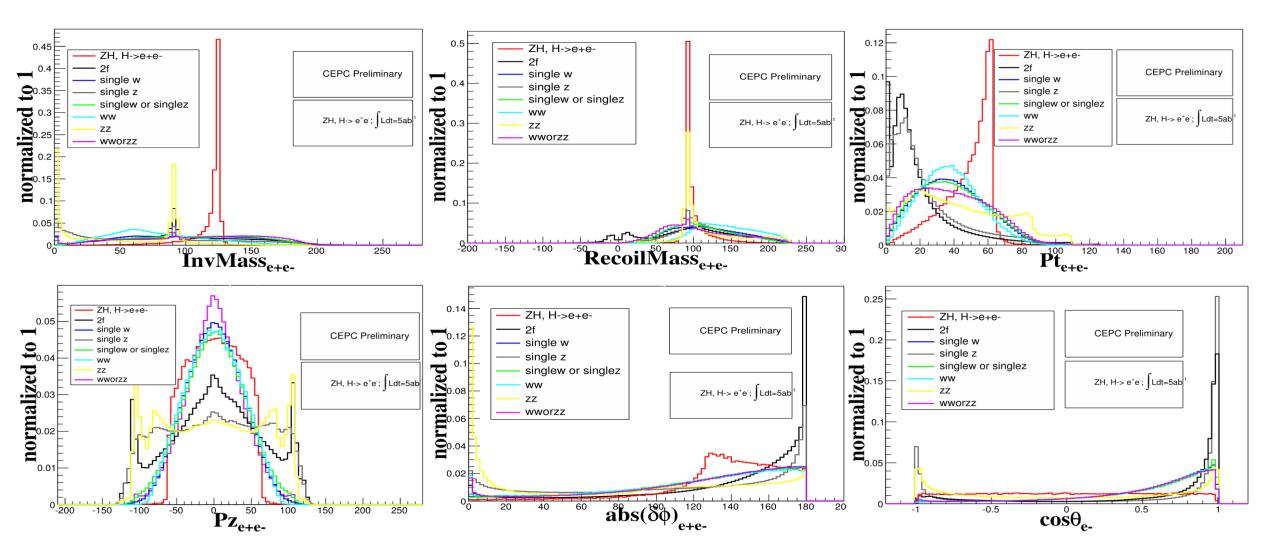
1. *E*_{track}< 1.5GeV ;

2.
$$\frac{E_{ecal}}{E_{ecal}+E_{hcal}} > 0.9 ;$$

3.
$$\frac{dE}{dx} \in (0.17^*e^{-6}, 0.3^*e^{-6})$$
;

4. Hit and shape information combination

discriminate varaibles to suppress background

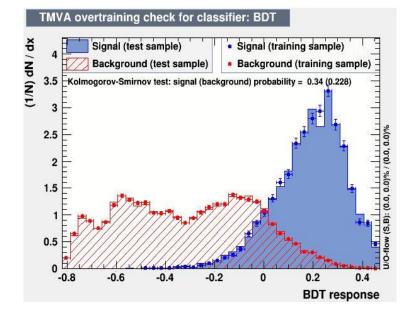

Invariant mass of dilepton system signal is gaussian distribution with 125 GeV peak value

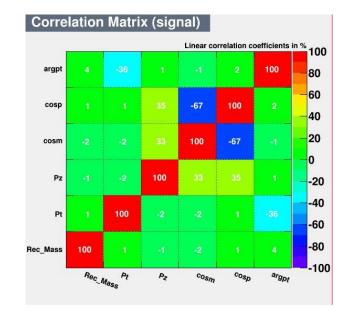
recoil mass of dilepton system signal is gaussian distribution with 91.2 GeV peak value

the sum of longitude momentum of dilepton
 the sum of transverse momentum of dilepton
 the ISR photon influence the backgrounds Pt and Pz distribution

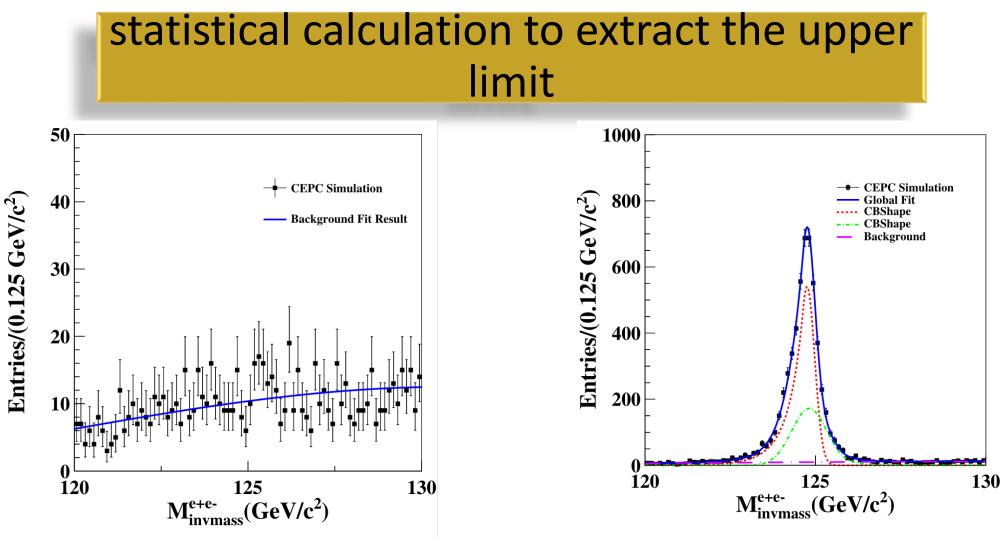
The difference of azimuthal angle of the two leptons the signal's production leptons is not back to back emited in space

the cosine polar angle value of the lepton production Higgs is the scalar boson so the distribution of the cos_e± is uniform

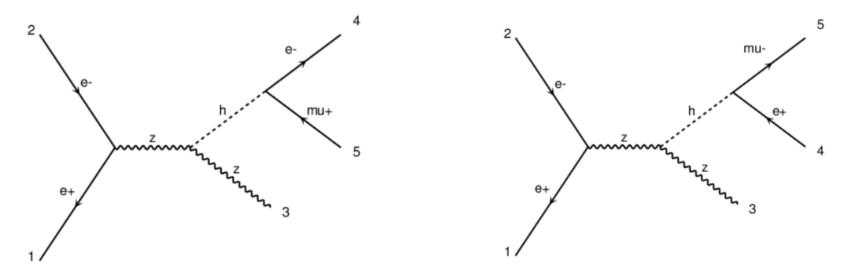


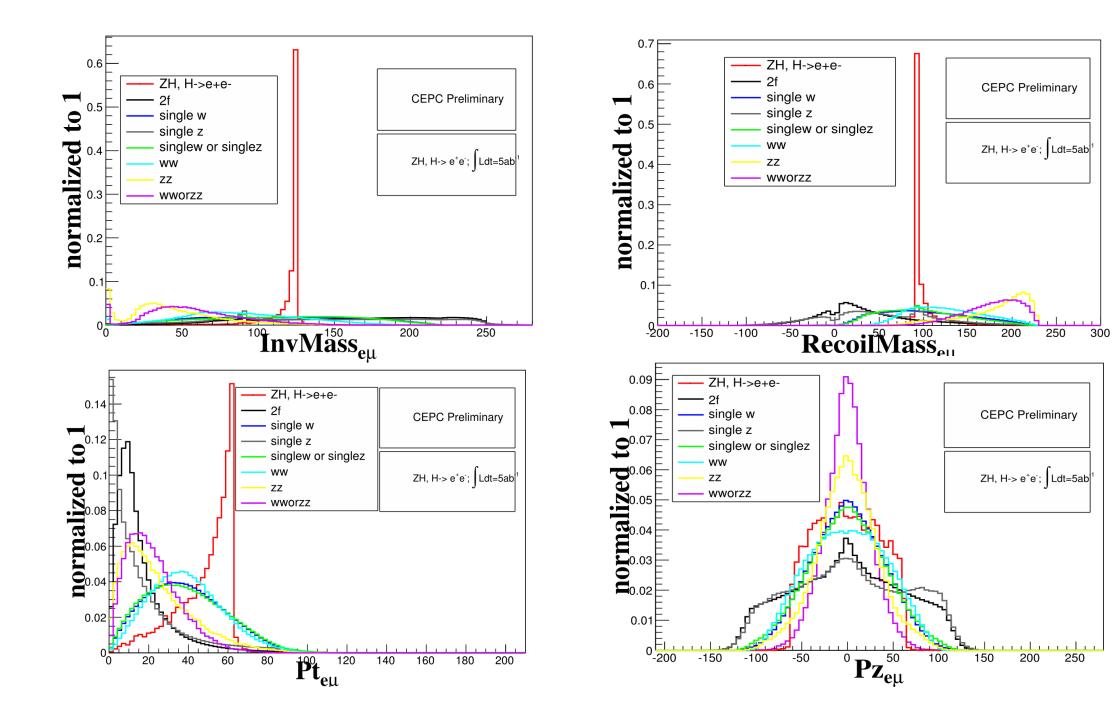

optimization and cut chain


Best significance	signal	2f	single ZorW	single Z	signle W	ww	ZZ	WWorZZ	Total <u>bkg</u>
total generate	50000	418194802	1259165	7913405	17190655	49115769	4967152	21902983	520543931
$N_{e+} \ge 1$, $N_{e-} \ge 1$	44894	36822471	978594	3480494	2260761	640839	758732	814608	45756499
$120{\leq}M_{inv}{\leq}1$ 30	28847	1954192	71193	126094	151950	26731	7593	55196	2392949
90≤ <i>M_{recoil}≤</i> 9 3	17015	61089	3564	6954	7255	1783	1464	2434	84543
46≤ <i>Pt_{ee}≤</i> 63	12032	6816	1863	1861	3652	868	682	1297	17039
-42≤ <i>Pz_{ee}</i> ≤41	11920	6372	1783	1750	3468	837	647	1247	16104
δ¢ ≥166	10347	5131	1696	1651	3233	702	566	1182	14161
$cos_{e+} \leq -0.07,$ $cos_{e-} \geq 0.14$	4833	241	86	48	161	20	178	70	804


BDT problem

• It is not as good as the results without the bdt cuts




- second order Chebychev for background pdf
- double cystal ball function for signal pdf
- black points for pseudo-data

The limit results is 0.1665‰ at 95% confidence level

preliminary results of Higgs --> eμ

- shows the capability of CEPC in measuring lepton flavor violating coupling
- Madgraph generator defining new coupling and vertex keeping lorentz structure invariant comparing with Higgs to ee

next research step

Beyond standard model leptonic channel research for Higgs

- ≻Higgs --> eµ
- ≻Higgs --> eτ
- **≻**Higgs --> μτ
- Higgs --> ττ

thanks!