Radiation Flux & MDI at CEPC

Xu yin, Xiu Qinglei, Ruan Manqi, Jin Yanli

Outline

- Geometry Setup
- Source of Backgrounds at CEPC
- Normalization
- Conclusion

Simulation Framework

Preliminary Detector Layout

The detector model (CEPC_v1) is inherited from ILD at the beginning of study, and been modified according to the lattice design of CEPC

Preliminary Interaction Region

Two beams will collide without crossing angle

Magnetic Field Setup

- In Quadrupole:
 - B(x,y,z)=(G*y,G*x,0) T
 - In QD0: G=-303.793T/m, 0<R<2cm, 1.5m<Z<2.75m
 - In QF1: G=308.661T/m, 0<R<2cm, 3.25m<Z<3.97m
- Other place:
 - Bz=3.5T, Bx=By=0

CEPC Field Map

Source of Backgrounds at CEPC

- Beamstrahlung
 - Pair production
 - Hadronic background
- Lost Particles
 - Radiative Bhabha
 - Beamstrahlung
 - Beam-Gas Scattering

• • • • •

- Synchrotron Radiation
 - Bending Magnets
 - Quadrupoles Magnets

Beamstrahlung

- When two bunches crossing, trajectories of particles in one bunch will be bent by the field of the other bunch and photons will be emitted
- The emitted photons might further interact with each other through pair production and hadronic processes

Beamstrahlung

Photon-Hadron Pairs (1 file)

Photon-Electron Pairs (1k files)

SI1MEVNE means "Silicon 1 MeV-equivalent flux".

It is use for calculations of damage.

Radiative Bhabha

 The process of electron positron scattering coupled with the initial-state radiation is called "radiative bhabha".

Synchrotron Radiation

• Electron and positron will emit the synchrotron radiation when their trajectories are bend by Lorentz force in the magnet. In the interaction region, these photons might hit the detector directly. The synchrotron radiation need be paid more attention because the number of photons is very large.

Bending Magnets

• Quadrupoles Magnets

SynchrotronRadiation (1 file) HitPosWide in Z (-12m—8m)

SynchrotronRadiation (1 file) HitPosWide in Z (-30m—30m)

Normalization

•
$$H_{BX} = \frac{1}{n_F} F_F F_B F_{IP}$$

• $H_S = \frac{f_{BX}}{n_F} F_F F_B F_{IP}$

- F_B : factor of beam
- F_{IP} : factor of IP
- F_F : number of files for one BX
- n_F : number of sample files
- f_{BX} : the bunch crossing frequency at one IP

One Bunch Crossing

One Bunch Crossing

Result

Result (zoom)

Hot Point

	unit	value	Z(cm)	R(cm)
Deposited Energy	GeV/cm ³ /s	1.5e+16	296	1.8
Neutron Flux	kHz/cm ²	3.9e+06	149	0.2
Neutrons > 100 keV	kHz/cm ²	3.9e+06	149	0.2
Photon Flux	kHz/cm ²	2.0e+16	290	1.6
Dose	Gy/Yr	6.5e+15	296	1.6
Pion Flux	kHz/cm ²	4.4e+08	1	0.2
Hadron Flux > 20 MeV	kHz/cm ²	5.7e+18	1	0.2
Si1MeVNE Flux	kHz/cm ²	7.9e+13	295	1.6
Silicon Tracker VTX Beampipe				
unit: cm 50 100	150	200 250	300	350 400

Result (50cm,10cm)

Conclusion

- Radiation background close to the IP is dominated by particles from pp collisions.
- Beyond beam line, back-splash neutrons become important
- Max Si1MeVNE Flux is about 7.9e+13 kHz/cm²

Next To Do

- Full physics process
- More geometry detail
- Cross check

THANKS

Xu yin, Xiu Qinglei, Ruan Manqi, Jin Yanli

Backup

Bin Size

- Full Map
 - 0<R<8m, 400 bins, bin size=2cm
 - 0<Z<16m, 800 bins, bin size=2cm
- Zoom Map
 - 0<R<1m, 500 bins, bin size=0.2cm
 - 0<Z<6m, 600 bins, bin size=1cm

Photon-Electron Pairs (1k files)

Photon-Hadron Pairs (1 file)

Radiative Bhabha (10 files)

SynchrotronRadiation (1 file) HitPosWide in Z (-12m—8m)

SynchrotronRadiation (1 file) HitPosWide in Z (-30m—30m)

Fluxmap: Si1MeVNE Flux kHz/cm**2