Available on CMS information server

CMS AN 2008/000+

Nov 20, 2008+

Search for an intermediate mass SM Higgs boson at CMS using Vector Boson Fusion $H \rightarrow ZZ \rightarrow 2\mu 2v_{*}$

Data sample

Signal sample generated by Pythia Higgs mass is set to be 200 GeV All background samples come from official production

Samplee	Total Events₽	Cross Section₽	Integrated	Dataset Name for official sample₽	
			Luminosity		
Signale	2.6k+	8.90 fb⊬	290 fb ⁻¹ ≁	له	
tt + jets∗⁄	10M⊷	694 pb↩	15 fb ⁻¹ √	ttnj-madgraph↓	
$Z + l j \downarrow$	950k⊷	940 pb↩	1.0 fb ⁻¹ ↩	Z1j-0ptw100-alpgen∉	
$Z + 2j \downarrow$	320k+	298 pb↩	1.1 fb ⁻¹ ↩	Z2j-0ptw100-alpgen, Z2j-100ptw300alpgen+	
$Z + 3j \omega$	73 k ≁	68 pb⊬	1.1 fb ⁻¹ ↩	Z3j-0ptw100-alpgen↔	
$ZZ + lj_{*}$	5.3 k ⊬	637 fb↩	8.3 fb ⁻¹ ↩	zz1j-alpgen∉	
$ZZ + 2j_{*}$	7.3 k ↔	247 fb↩	30 fb ^{-1↔}	zz2j-alpgen≁	
$ZZ + 3j_{*}$	5.4 k ≁	239 fb+≀	23 fb ⁻¹ √	zz3j-alpgen ↓	
$WW + 2j\varphi$	5.9 k ₽	4.0 pb₽	1.5 fb ⁻¹ ₽	ww2j-alpgen₽	

Physics Objects

Global muons
IC Jet with cone 0.5
L2+L3 corrections
MET

* JES correction + mu correction

HLT, skimming & Preselection

- High Level Trigger: 14TeV physics run at 10³²cm⁻²s⁻¹ luminosity
- * Skim: at least two muons of any sign with $p_T > 5 \text{GeV}$
- Preselect:
- > exactly two muons with opposite charge and $p_T > 5$ GeV.
- > | 𝔄 | < 2.4.</p>
- > 81 GeV < $m_{\mu \mu}$ < 101 GeV

High level trigger₽	Thresholds (GeV)
1MuonIso₊ ²	110
1MuonNonIso.	1 6 ₽
2MuonNonIso.	(3,3)
XMuonJets.	(7,40)-

Forward jet tagging

Exactly 2 jets with pt >30GeV

 $\Delta \eta = |\eta_{j1} - \eta_{j2}| > 4.2$

Forward jet tagging

$$\begin{split} M_{jj} \, > \, 8 \, 0 \, 0 \, G \, e \, V \\ \eta_{jet}^{low} + 0.7 < \eta_{\mu} < \eta_{jet}^{high} - 0.7 \end{split}$$

MET

- the signal events have large true MET in generator level due to presence of two energetic neutrinos.
- For Z+jets events, MET is primarily a detector effect

MET

MET component in leading jet direction
A better discriminating variable than MET

 $MET\cos\phi < -40GeV$

Cutflow table

Selection Cut _e	Signal	tt+jets₽	$Z+2j_{\varphi}$	Z+3j ₄	$ZZ+lj_{v}$	$ZZ+2j_{\varphi}$
¢.	8.90 ₽	694k	298k.	68k4	637.	247.
preselection.	5.67 ₽	1.28k	29.4k⊬	7.83 k ⊬	120+	47.7↔
jets multiplicity.	3.06+	369+	14.1 k ⊬	3.19k⊬	41.9+	12.34
jets Δη.₀	1.74.	3.66+	259 ₽	93₽	0.24	0.36
di-jet mass₊	1.314	0.80+	43.6	16.4.	0+	0.134
mu between jets₽	1.14.	0.20	20.0	8.18	0+	0.104
MET.	0.72	0.134	00	0,0	0,0	04

Accepted x-section in fb

Z+jets estimation

Cumulative distribution function of Gaussian

$$F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

Higgs Transverse Mass

$$M_{T} = \sqrt{\left(\sqrt{P_{T,\mu\mu}^{2} + M_{\mu\mu}^{2}} + \sqrt{P_{T,\nu\nu}^{2} + M_{Z}^{2}}\right)^{2} - \left(\vec{P}_{T,\mu\mu} + \vec{P}_{T,\nu\nu}\right)^{2}}$$

Significance

The significance was obtained based on the the likelihood ratio,

$$S_L = \sqrt{2 \ln Q}$$

 Q is the likelihood ratio. As to the simple approach of the counting method,

$$S_{cL} = \sqrt{2((s + b)) \ln(1 + \frac{s}{b}) - s)}$$

* s and b are expected number of signal and background evnets at a given luminosity condition. In this analysis, we got $S_{cL} = 5$ at 26fb⁻¹ and $S_{cL} = 3$ at 10fb⁻¹.

Experimental systematics

Jet energy scale

$$\sigma_E^{jet}/E = \begin{cases} 10\% & p_{\rm T} < 20\,{\rm GeV/c} \\ 10\% - 7\% * (p_{\rm T} - 20\,{\rm GeV/c})/(30\,{\rm GeV/c}) & 20\,{\rm GeV/c} < p_{\rm T} < 50\,{\rm GeV/c} \\ 3\% & p_{\rm T} > 50\,{\rm GeV/c} \end{cases}$$

3%

MET scale ~ 10%
 10%

Luminosity ~ 3%
 2%

Total 11%

Summary

- * A full analysis of Higgs production via Vector Boson Fusion and $H \rightarrow ZZ \rightarrow$ 2 μ 2 ν presented
- 5 σ could be achieved for Higgs mass of 200GeV at an integrated luminosity of 26/fb
- This channel can contribute to the discovergy of an intermediate mass Higgs boson