Exotic Z_b states and the more debatable X(5568)

Xian-Wei Kang

Murcia Uni., Spain in collaboration with J. A. Oller

12th National Conference on Particle Physics, Aug. 22 - 26, 2016

Outline

General results for Z_b from their pole positions Xian-Wei Kang, Zhi-Hui Guo and J.A.Oller. PRD2016

2 the state X(5568) observed by D0 collaboration $x_{ian-Wei}$ Kang,

J.A.Oller, PRD2016

Introduction

- A series of exotic hadron candidate XYZ were and are observed, cannot be accommodated by potential model kinematical effects, molecular, quark-gluon hybrid, et al..
- Typically different scenarios predicts different constituents, in practice, may involve several mechanism
- Stay close to threshold of meson pairs: only 2-3 MeV above \(\bar{B}^{(*)}B^*\) threshold
- Quantum numbers: $I^G(J^P) = 1^+(1^+)$, and thus for the electrical neutral isotopic state $I_3 = 0$, $J^{PC} = 1^{+-}$. $\bar{B}B^*$ stands for G = +1 combination $B\bar{B}^* \bar{B}B^*$.

Effective range expansion

- Effective range expansion (ERE) could be a proper tool to study the physics in the vicinity of threshold. elastic isovector S-wave BB* scattering. No specific dynamics is assumed.
- However, at pole position, momentum (modulus of complex values) is around m_{π} (pion mass). Left-hand branch point happens from $im_{\pi}/2$, inside the circle of the convergence radius, which prevents the validity of ERE.
- However, the pion exchange are suppressed. Specific calculation exists [Valderrama PRD2012; Hong-Wei Ke et al. JHEP2012, Dias PRD2015; Dian-Yong Chen and Xiang Liu, PRD2011]
- Chiral EFT power counting also shows coupled-channel effects are also suppressed. [Valderrama PRD2012]
- Also supported by Belle measurement: large branching ratio for $Z_h^{(\prime)} \to \bar{B}B^{(*)}$, around 80% [arXiv:1209.6450 [hep-ex.]]
- Uncoupled-channel ERE works, at least, as a first approximation approach

OZI suppression

- The light meson $(q\bar{q})$ exchange violates OZI rule for I=1 sector. Two-meson exchange contributes as the lowest-order.
- $B\bar{B}\pi$ vertex does not exists, but $B\bar{B}\rho$ and $B\bar{B}\omega$ do. Total contribution vanishes if ρ and ω are taken as equal mass. [Dias et al., PRD2015]

Compositeness for resonance

- Weinberg compositeness condition: wave function renormalization constant Z=0. In fact, Z = 1 X, where X = $\gamma^2 \frac{dG(s_R)}{s_R}$ quantifies the weight of constituents. γ is the residue for t(s) in the 1st sheet at the pole, and G is the two-point loop function. only applied to bound state model independent relation for deuteron [Weinberg 1963; 1965]
- For resonance case, as long as $\sqrt{\text{Re}E_R^2}$ larger than the lightest threshold, $X=|\gamma^2\frac{dG(s_R)}{s_R}|$, γ residue in the 2nd sheet [Guo and Oller, PRD2015],
- Adapted to non-relativistic case, since here we use ERE. criterion: $M_R > M_{th}$, consistent with above
- $X = \gamma_k^2 = -\frac{k_i}{k_r} = (2r/a 1)^{-1/2}$, where the resonant momentum $k_R = k_r + ik_i$, γ_k is the residue in the variable k, a and r are scattering length and range.
- In terms of resonance property

$$\begin{split} X &= -\frac{2(M_R - M_{th})}{\Gamma_R} + \sqrt{1 + \left[\frac{2(M_R - M_{th})}{\Gamma_R}\right]^2} \\ &= 1 - \frac{2(M_R - M_{th})}{\Gamma_R} + 2\left[\frac{(M_R - M_{th})}{\Gamma_R}\right]^2 + \cdots \end{split}$$

ERE result

	$Z_b(10610)$	$Z_b(10650)$
a (fm)	-1.03 ± 0.17	-1.18 ± 0.26
$r (\mathrm{fm})$	-1.49 ± 0.20	-2.03 ± 0.38
$X = \gamma_k^2$	0.75 ± 0.15	0.67 ± 0.16
$g^2 (\text{GeV}^2)$	362 ± 71	263 ± 63

TABLE I. From top to bottom and left to right, we give the scattering lengths (a) and effective ranges (r) of the $B\overline{B}^*$ (Z_b) and $B^{(*)}\overline{B}^*$ (Z_b') systems, in order. In the last two lines compositeness (X), which is equal to γ_k^2 , and couplings squared g^2 for the $Z_b^{(r)}$ resonances are collected.

- g^2 : the absolute squared coupling constant for calculating the width in the standard PDG form
- *Real* values for *a* and *r* are obtained so as to reproduce the pole position. negative *a* and *r* can be realized by local contact or square well potential
- A distinct feature: r is in natural size

Inclusion of CDD pole

Only right-hand cut without crossed-channel effect [Oller and Oset, PRD1999]

$$t(E) = \left[\sum_{i} \frac{g_{i}}{E_{i} - M_{\text{CDD}}} - ik\right]^{-1}$$

- Expansion of Re $t(E)^{-1}$ in powers of k^2 is equivalent to ERE, but worry for the small scale $[M_{CDD} M_{th}]$, which restricts the validity range.
- M_{CDD} far away from M_{th} , then modulu of r is around 1 fm, otherwise r is very large.

$$\delta a = -\frac{M_{\text{th}} - M_{\text{CDD}}}{g_i}, \quad \delta r = -\frac{g_i}{\mu (M_{\text{th}} - M_{\text{CDD}})^2}$$
 (1)

- M_{CDD} close to M_{th}, then small X, i.e., containing also other important components, e.g., compact quark-gluon states; M_{CDD} far from M_{th}, then the two meson constitute dominates
- First looking at r, how large it is

Width and compositeness: consistency check I

 In ERE, real a and r are fixed by reproducing pole position, single channel saturates, thus the width of Z_h s should correspond to partial decay width to $\bar{B}B^{(*)}$ [g^2 input from ERE].

$$\Gamma^{(1)} = \frac{k(M_R)g^2}{8\pi M_R^2}$$

$$\Gamma^{(2)} = \frac{g^2}{16\pi^2} \int_{M_{th}}^{+\infty} \frac{dW \, k(W)}{W^2} \frac{\Gamma_R}{(M_R - W)^2 + \Gamma_R^2/4}$$

$$= \frac{X|k_R|M_R^2}{\pi\mu} \int_{M_{th}}^{+\infty} \frac{dW \, k(W)}{W^2} \frac{\Gamma_R}{(M_R - W)^2 + \Gamma_R^2/4}$$
(2)

• In $\Gamma^{(2)}$, integrating up to ∞ is denoted by subscript >, and up to $M_B + n\Gamma_B$, (n = 8 is used) by <

Γ (MeV)	$Z_b(10610)$	$Z_b(10650)$
$\Gamma^{(1)}$	14.9 ± 2.3	9.5 ± 2.1
$\Gamma^{(2)}_{>}$	21.9 ± 3.3	13.4 ± 2.8
$\Gamma_{<}^{(2)}$	18.5 ± 2.4	11.3 ± 2.1

Experiment: $\Gamma_{Z_b}=18.4\pm2.4,\ ^{-1}\Gamma_{Z_b'}=11.5\pm2.2$ in unit of MeV

Consistency check II

- Again, from the working assumption single channel saturates, fixing $\Gamma^{(2)} = \Gamma_R$, one gets g^2 and further the residue $|\gamma_k^2| = X$ (X compositeness)
- Branching ratio from Belle measurement can be taken into account,
 Γ⁽²⁾ = Γ_R × Br [arXiv:1209.6450[hep-ex]]

$$Br(Z_b(10610)^+) \rightarrow \bar{B}B^*) = (86.0 \pm 3.6)\%,$$

 $Br(Z_b(10650)^+) \rightarrow \bar{B}^*B^*) = (73.4 \pm 3.6)\%$

	$Z_b(10610)$	$Z_b(10650)$
$\Gamma = \Gamma_R$	$X = 0.76 \pm 0.12$	$X = 0.69 \pm 0.14$
$\Gamma = \Gamma_R \cdot Br$	$X_{\rm ex} = 0.66 \pm 0.11$	$X_{\rm ex} = 0.51 \pm 0.10$

\(\bar{B}B^{(*)}\) weight is dominant but other non-\(\bar{B}B^{(*)}\) components also play important role

ERE, Flatté, and Breit-Wigner parameterization

- Discuss the applicability of Breit-Wigner functions in the experimental analyses [see e.g., Cleven et al., EPJA 2011]
- ERE is adequate to check BW or Flatté, since it is not affected by threshold singularity

$$bw(E) = |t(M_R)|^2 \frac{\Gamma_R^2/4}{(E - M_R)^2 + \Gamma_R^2/4}$$

$$ft(E) = \frac{f_0}{|E - M_R' + i\Gamma_R(E)/2|^2}$$

$$\Gamma_R(E) = \frac{2\gamma_k^2}{\mu} k(E)|k_R|, E \ge M_R,$$

$$= i\frac{2\gamma_k^2}{\mu} |k(E)k_R|, E < M_R$$

$$M_R' = M_R + \gamma_k^2 k_i |k_R|/\mu$$

• top channel: $\Gamma_R=18.4$ MeV, where dotted line corresponds to $M_R'=M_{\rm th}+|k_R|^2/2\mu,\,M_R-M_{\rm th}\approx 2$ MeV, and the large Γ_R softens the energy dependence of t(E)

• bottom channel: $\Gamma_R = 3.0 \text{ MeV}$

12/16

X(5568): Motivation and idea

- D0 Collaboration has reported a narrow peak in the $B_s^0 \pi^{+-}$ mass spectrum, denoted as X(5568).
- In fact, the quantum numbers J^P for the resonance have not been determined unambiguously yet.
- S-wave $B_s\pi-B\bar{K}$ transition was studied [Albaladejo et al., PLB2016]
- Note: X(5568) is very close to $B_s^*\pi$ (above only 10 MeV), from a "molecular" perspective, it is suggestive to look for a coupled-channel-scattering scenario involving both $B_s\pi$ and $B_s^*\pi$. In this case, at least P-wave
- 4×4 coupled channel: (1) $B_s\pi$, (2) $B_s^*\pi$, (3) $B\bar{K}$, (4) $B^*\bar{K}$
- Indeed, interpretation of D0 data by P-wave scattering can not be excluded, will be shown below
- BW parameterization with orbital angular momentum L:

$$BW_{L}(m) \propto \frac{M_{X}^{2}\Gamma_{X}(m)}{(M_{X}-m)^{2}+M^{2}\Gamma_{X}^{2}(m)}$$
$$\Gamma(m) = \Gamma_{X}\left(\frac{k(m)}{k(M_{X})}\right)^{2L+1}$$

Potential

Results and discussion

- Chiral Unitary Approach: the potential is treated on shell and the Bethe-Salpeter equation can then be solved algebraically [Oller and Oset, NPA1997]
- $T^{-1}(s) = V^{-1}(s) + G(s)$, with G two-point Green function, the determinant $\Delta(s) = \det[V^{-1}(s) + G(s)]$. pole exists then $\Delta(s_R) = 0$
- $m_{B_2^0} + m_{\pi} < m_X < m_B + m_K,$ and $G(s) = \text{diag} \{G_1^{II}(s), G_2^{II}(s), G_3(s), G_4(s)\} II: \text{ second (unphysical)}$ sheet
- G-function regularized by dimensional regularization, $G_{i,\alpha}$; by cutoff, $G_{i,\Lambda}$. channel label: i, and μ renormalization scale
- u-channel crossing symmetry constraint $\Rightarrow \alpha$, also very close to the natural size estimation $lpha_i(\mu_i) = -2\log\left(1+\sqrt{1+m_{2i}^2/\mu_i^2}
 ight)$ with m_{2i} the heavier meson mass in channel i; take $\Lambda = 770$ MeV or 1 GeV
- With these fixed values, no pole corresponding to X(5568) is found
- Release the subtraction constants such that the pole X(558) is imposed, then no physical interpretation (hindering the *P*-wave dynamically generated resonance)
- We have checked potential is too weak to "bound" two mesons
- Combining both S- and P-wave study, the molecular assignment is not plausible