

Charm CP Violation and Rare Decays at LHCb

孙亮 武汉大学 2016/08/23

中国物理学会高能物理分会第十二届全国粒子物理学术会议

Highlighted LHCb results

- Charm mixing and CP asymmetries
 - First observation of mixing in D0 $\,\rightarrow\,$ K $\pi\pi\pi$ decay
 - Mixing and CP asymmetry in D0 \rightarrow K⁺ π ⁻ (DT, **preliminary**)
 - Difference between CP asymmetries in D⁰ \rightarrow K⁺K⁻ and D⁰ \rightarrow $\pi^{+}\pi^{-}$ decays, ΔA_{CP} (pion tagged)
 - CP asymmetry in $D_0 \rightarrow K^+K^-$ decay (preliminary)
- Rare D decays
 - First observation of D $\rightarrow K\pi\mu\mu$ decay in the $\rho 0/\omega$ region in the dimuon mass spectrum
 - Search for D \rightarrow e⁺µ⁻ decay

LHCb detector

- LHCb acceptance: $2 < \eta < 5$ (forward region)
- All the results presented today are based on (a subset of) 3fb⁻¹ Run1 data of LHC collected within 2011-2012
- 1.15 billion charm hadron decays reconstructed in Run1 >20X CDF samples of 10fb⁻¹

Mixing and CPV in $D^{\circ} - \overline{D}^{\circ}$

- Charm mixing: unique probe of mixing in the up-type quark system
 - Mass eigenstates are related to their flavor eigenstates via $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D}^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
 - If indirect CPV is conserved, |q/p| = 1, $\phi \equiv \arg(q/p) = 0$
 - Mixing parameters based on the mass and width differences: $x \equiv (m_2 - m_1)/\Gamma, y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$
- In the SM, expecting
 - *x*, *y* ~ 1% or less
 - CPV ~ 1% or less
- Observation of enhanced CPV in the charm sector would be a clear indication of new physics

Mixing and CPV in $D^{\circ} - \overline{D}^{\circ}$

- Charm mixing: unique probe of mixing in the up-type quark system
 - Mass eigenstates are related to their flavor eigenstates via $|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D}^0\rangle$, with $|q|^2 + |p|^2 \equiv 1$
 - If indirect CPV is conserved, |q/p| = 1, $\phi \equiv \arg(q/p) = 0$
 - Mixing parameters based on the mass and width differences: $x \equiv (m_2 - m_1)/\Gamma$, $y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$, with $\Gamma \equiv (\Gamma_2 + \Gamma_1)/2$
- In the SM, expecting
 - *x*, *y* ~ 1% or less
 - CPV ~ 1% or less
- Observation of enhanced CPV in the charm sector would be a clear indication of new physics

D^o flavor tagging in LHCb

 $D^{*0} \rightarrow D^0 \pi^+_s$ decay chain **Pion tagged**: flavor determined by charge of soft pion from "prompt" D*

 $\begin{array}{l} B \rightarrow D^{(*)} \, \mu^{*} \nu_{\mu} X \; semi-leptonic \\ \hline \textbf{Muon tagged}: \; flavor \\ determined \; by \; charge \; of \\ muon \; from \; B \\ \hline \textbf{Doubly tagged (DT)}: \; flavor \\ determined \; by \; charge \; of \; soft \\ pion \; from \; "secondary" \; D^{*}, \\ which \; is \; from \; muon \; tagged \; B \end{array}$

Mixing in $D^0 \rightarrow K\pi(\pi\pi)$

In the limit of x, y \ll 1, and assuming no CPV, the WS/RS yield ratio R varies with D⁰ decay time t as:

$$R(t) \equiv \frac{N(WS)(t)}{N(RS)(t)} \approx R_D + \sqrt{R_D} \ y' \ \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

τ: known *D*⁰ lifetime *R*_D: the ratio of DCS to CF decay rates δ: strong phase difference between DCS and CF amplitudes $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} B: Different R_D and \delta in D→Kπππ cases$

Observation of mixing in $D^{0} \rightarrow \ K\pi\pi\pi$

 π_{S}^{+}

В

PV

Mixing and CPV in $D^{\scriptscriptstyle 0}$ \rightarrow $K\pi$

• Separate mixing measurement on D^0 and \overline{D}^0 :

$$R^{\pm}(t) \approx R_D^{\pm} + \sqrt{R_D^{\pm}} \, {y'}^{\pm} \, \frac{t}{\tau} + \frac{x'^{2\pm} + {y'}^{2\pm}}{4} \left(\frac{t}{\tau}\right)^2$$

• Using Doubly Tagged samples, complementary to previous measurement using prompt $D^{*+} \rightarrow D^0 \pi^+_s$ [PRL 111, 251801 (2013)]

Advantage for DT: improved acceptance at low decay time t & cleaner background

 μ^{-}

DT + prompt for $D^0 \rightarrow K\pi$

- Combined fits to both prompt and DT samples to extract mixing parameters (R[±]_D, x'^{2±}, y'[±]) separately for D⁰ and \overline{D}^0 : $R^{\pm}(t) \approx R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \frac{t}{\tau} + \frac{x'^{2\pm} + y'^{2\pm}}{4} \left(\frac{t}{\tau}\right)^2$
- Sensitivity improvement over "prompt alone" results for different fit setups:

Parameter	DT+prompt combination	Prompt alone	% Error Improvement	:
	No CPV			
$R_D[10^{-3}]$	3.533 ± 0.054	3.568 ± 0.067	19	
$x'^{2}[10^{-5}]$	3.6 ± 4.3	5.5 ± 4.9	12	
y'[10 ⁻³]	5.23 ± 0.84	4.80 ± 0.94	11	
χ^2/NDF	96.594/111 R+	$= R^{-} x'^{2}$	²⁺ =x ¹ ²⁻ v ¹⁺ =v ¹	-
	Ľ D	D' N		_
No Direct CPV				
$R_D[10^{-3}]$	3.533 ± 0.054	3.568 ± 0.067	19	
$x'^{2+}[10^{-5}]$	4.9 ± 5.0	6.4 ± 5.6	¹¹ No	CP'
y'+[10 ⁻³]	5.14 ± 0.91	4.80 ± 1.08	16	0.
$x'^{2-}[10^{-5}]$	2.4 ± 5.0	4.6 ± 5.5	9	
y'-[10 ⁻³]	5.32 ± 0.91	4.8 ± 1.08	16	
χ^2/NDF	96.147/109	D+	- D-	
	κ _D - κ _D			
All CPV Allowed				
$R_D^+[10^{-3}]$	3.474 ± 0.081	3.545 ± 0.095	15	
$x'^{2+}[10^{-5}]$	1.1 ± 6.5	4.9 ± 7.0	7	
y'+[10 ⁻³]	5.97 ± 1.25	5.10 ± 1.38	9	
$R_D^{-}[10^{-3}]$	3.591 ± 0.081	3.591 ± 0.090	10	
$x'^{2-}[10^{-5}]$	6.1 ± 6.1	6.0 ± 6.8	10	
y'-[10 ⁻³]	4.50 ± 1.21	4.50 ± 1.39	13	
χ^2/NDF	94.960/108	A	II tloating	_

Using prompt
$$D^{**}$$
 $K(\pi)$
 A_{CP} for $D^0 \rightarrow h^+h^-$
 $P^{V} = \frac{N[D^{*+} \rightarrow D^0(f)\pi_s^+] - N[D^{*-} \rightarrow \overline{D}^0(f)\pi_s^-]}{N[D^{*+} \rightarrow D^0(f)\pi_s^+] + N[D^{*-} \rightarrow \overline{D}^0(f)\pi_s^-]}$
Physics observable
 $A_{raw}(f) \approx A_{CP}(f) + A_D(f) + A_D(\pi_s^+) + A_P(D^{*+})$
detection asymmetries in
reconstructing the final
Null for CP-eigenstates
 $f=\pi\pi, KK.$
 I the difference.
 I cancels out in the difference.
 I cancels out in the difference.

> After cancellations, we have the A_{CP} difference:

$$\Delta A_{CP} = A_{\rm raw}(K^-K^+) - A_{\rm raw}(\pi^-\pi^+) = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$$

To account for imperfect cancellations of detection and production asymmetries due to difference in the kinematic properties, distributions of D^{*+} decays of KK reweighted to those of $\pi\pi$

Using prompt
$$D^{*+}$$
 $K(\pi)$
 A_{CP} for $D^0 \rightarrow h^+h^-$
 $A_{raw}(f) = \frac{N[D^{*+} \rightarrow D^0(f)\pi_s^+] - N[D^{*-} \rightarrow \overline{D}^0(f)\pi_s^-]}{N[D^{*+} \rightarrow D^0(f)\pi_s^+] + N[D^{*-} \rightarrow \overline{D}^0(f)\pi_s^-]}$
Physics observable
 $A_{raw}(f) \approx A_{CP}(f) + A_D(f) + A_D(\pi_s^+) + A_P(D^{*+})$
detection asymmetries in
reconstructing the final
Null for CP-eigenstates
 $f=\pi\pi, KK.$
 I the difference.
 I cancels out in the difference.
 I cancels out in the difference.

To measure A_{CP} (KK) alone, detection and production asymmetries are eliminated using weighted control samples:

$$\begin{aligned} A_{CP}(D^0 \to KK) = &A_{raw}(D^0 \to KK) - A_{raw}(D^0 \to K^-\pi^+) \\ &+ &A_{raw}(D^+ \to K^-\pi^+\pi^+) - A_{raw}(D^+ \to \overline{K}^0\pi^+) + &A_D(\overline{K}^0) \end{aligned}$$

ΔA_{CP} result using Run1 data

LHCb CPV searches in D⁰ \rightarrow h⁺h⁻

A_{CP} for D⁰ \rightarrow K⁺K⁻ using Run1 data

 Simultaneous fit across D*+ and D*- data samples to measure:

 $A_{CP}(KK) = (+0.14 \pm 0.15 \pm 0.10)\%$

- Using $\Delta(A_{CP})$ from <u>PRL 116, 191601</u> $A_{CP}(\pi\pi) = (0.24 \pm 0.15 \pm 0.11)\%$
- Combine with muon tagged $A_{CP}(KK, \pi\pi)$ with full correlations $A_{CP}^{\text{comb}}(KK) = (0.04 \pm 0.12 \pm 0.10)\%$ $A_{CP}^{\text{comb}}(\pi\pi) = (0.07 \pm 0.14 \pm 0.11)$

See backup slides for detailed info on this analysis

Consistent with CP conservation

LHCb rare D decay results

s / (2.6 MeV/c²)

• First observation of $D^0 \rightarrow K^-\pi^+\mu^+\mu^-$, in the ρ^0/ω region (675 < m($\mu^-\mu^+$) < 875 MeV):

$$\mathcal{B}(D^0 \to K^- \pi^+ \mu^+ \mu^-) = (4.17 \pm 0.12 \,(\text{stat}) \pm 0.40 \,(\text{syst})) \times 10^{-6}$$

- > $D^0 \rightarrow K^- \pi^+ \pi^- \pi^-$ as the normalization channel, BF from CLEO ⁰₁₈₀₀
- Compatible with SM expectation [JHEP 04(2013)135]
- Lepton Flavor Violation mode D⁰ → eµ is forbidden in the SM, while some SM extensions suggest rates up to 10⁻⁶:

$$\mathcal{B}(D^0 \to e^{\pm} \mu^{\mp}) < 1.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$$

- > $D^0 \rightarrow K^- \pi^+$ as the normalization channel
- Most stringent constraint to date, one order of magnitude lower than the previous best one from BELLE [PRD 81 (2010) 091102]

Summary

- Acting as a charm factory, LHCb has been quite successful in collecting the world's largest ever data samples
- Based on Run1 3fb⁻¹ data, LHCb has recently presented a number of results related to charm decays
- No evidence for CPV is found so far, however LHCb has just started to approach SM expectations
- LHCb results on rare D decays are also the world's best
- Stay tuned for more exciting LHCb results from Run2 due to higher luminosity and improved trigger system

$D^0 \rightarrow KK$ cancellation of asymmetries

Control Channels to cancel:

$$\begin{aligned} A_{CP}(D^{0} \to KK) &= A_{raw}(D^{0} \to KK) - A_{P}(D^{*+}) - A_{D}(\pi_{s}^{+}) + \mathcal{O}(A^{3}) \\ A_{raw}(D^{0} \to K^{-}\pi^{+}) &= A_{P}(D^{*+}) + A_{D}(\pi_{s}^{+}) + A_{D}(K^{-}) + A_{D}(\pi^{+}) \\ A_{raw}(D^{+} \to K^{-}\pi^{+}\pi^{+}) &= A_{P}(D^{+}) + A_{D}(K^{-}) + A_{D}(\pi^{+}) + A_{D}(\pi^{+}) \\ A_{raw}(D^{+} \to \overline{K}^{0}\pi^{+}) &= A_{P}(D^{+}) + A_{D}(\overline{K}^{0}) + A_{D}(\pi^{+}) \end{aligned}$$

- Nominal weighting is in
 - 1. $D^+ \to K^- \pi^+ \pi^+$ weighted to $D^+ \to \overline{K}^0 \pi^+$
 - 2. $D^0 \rightarrow K\pi$ weighted to $D^+ \rightarrow K^-\pi^+\pi^+$
 - 3. $D^0 \rightarrow KK$ weighted to $D^0 \rightarrow K\pi$
- Variables weighted: $D^{*+}(p_T, \eta, \phi)$, $D^+(p_T, \eta)$, π_{bachelor} , high $p\pi inK\pi\pi(\eta, \phi)$, $K, \pi(p_T, \eta, \phi)$

Extracting yields for $A_{CP}(KK)$

LHCb Integrated Luminosity in pp collisions 2010-2016

$$\begin{split} \mathbf{R}_{M} &= \frac{1}{2}(x^{2}+y^{2}) \\ 2\, \mathbf{y}_{CP} &= \left(\left| q/p \right| + \left| p/q \right| \right) y \cos \phi \ - \left(\left| q/p \right| - \left| p/q \right| \right) x \sin \phi \\ 2\, \mathbf{A}_{\Gamma} &= \left(\left| q/p \right| - \left| p/q \right| \right) y \cos \phi \ - \left(\left| q/p \right| + \left| p/q \right| \right) x \sin \phi \\ \mathbf{x}_{K^{0}\pi\pi} &= x \end{split}$$

$$egin{array}{rcl} x_{K^0\pi\pi} &=& x \ y_{K^0\pi\pi} &=& y \ |q/p|_{K^0\pi\pi} &=& |q/p| \ \operatorname{Arg}{(q/p)_{K^0\pi\pi}} &=& \phi \end{array}$$

$$\begin{pmatrix} x'' \\ y'' \end{pmatrix}_{K^+\pi^-\pi^0} = \begin{pmatrix} \cos \delta_{K\pi\pi} & \sin \delta_{K\pi\pi} \\ -\sin \delta_{K\pi\pi} & \cos \delta_{K\pi\pi} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

$$\mathbf{A}_M = \frac{|q/p|^2 - |p/q|^2}{|q/p|^2 + |p/q|^2}$$

$$\begin{aligned} \boldsymbol{x}'^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (\boldsymbol{x}'\cos\phi\pm\boldsymbol{y}'\sin\phi) \\ \boldsymbol{y}'^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (\boldsymbol{y}'\cos\phi\mp\boldsymbol{x}'\sin\phi) \end{aligned}$$

$$\begin{split} &\frac{\Gamma(D^0 \to K^+ \pi^-) + \Gamma(\overline{D}{}^0 \to K^- \pi^+)}{\Gamma(D^0 \to K^- \pi^+) + \Gamma(\overline{D}{}^0 \to K^+ \pi^-)} &= R_D \\ &\frac{\Gamma(D^0 \to K^+ \pi^-) - \Gamma(\overline{D}{}^0 \to K^- \pi^+)}{\Gamma(D^0 \to K^+ \pi^-) + \Gamma(\overline{D}{}^0 \to K^- \pi^+)} &= A_D \\ &\frac{\Gamma(D^0 \to K^+ K^-) - \Gamma(\overline{D}{}^0 \to K^+ K^-)}{\Gamma(D^0 \to K^+ K^-) + \Gamma(\overline{D}{}^0 \to K^+ K^-)} &= A_K + \frac{\langle t \rangle}{\tau_D} \mathcal{A}_{CP}^{\text{indirect}} \\ &\frac{\Gamma(D^0 \to \pi^+ \pi^-) - \Gamma(\overline{D}{}^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to \pi^+ \pi^-) + \Gamma(\overline{D}{}^0 \to \pi^+ \pi^-)} &= A_\pi + \frac{\langle t \rangle}{\tau_D} \mathcal{A}_{CP}^{\text{indirect}} \end{split}$$

$$2 \mathcal{A}_{CP}^{ ext{indirect}} \;=\; ig(\left| q/p
ight| + \left| p/q
ight) x \sin \phi \;-\; ig(\left| q/p
ight| - \left| p/q
ight) y \cos \phi$$