Quasi Distribution

and 2D QCD in Large N Limit

LiuJi li (IHEP, CAS)
collaboration wiff $\mathbf{Y} u$ JIA (IHEP), shuangran LIANG (IHEP),
and Xiaonu XIONG (INFN, Pavia)

2016/08/25, USTC, Hefei

PDF in 4 § QCD

Light-cone parton distribution function
Ji, X.D. PRL78,610(1997), PRD55,7114(1997)
Radyushkin, A.V. PLB.380,417(1996), PLB385,333(1996)

- Experimental extraction. No problem.
- Lattice calculation. Very bard.

Quasi parton distribution function
Ji, X.D. et al. PRLs(2013), $\operatorname{PRDs}(2014,2015)$

- Lattice calculation. Directfy.
- Extract light-cone PD via matcfing.

Why 2 dimensional QCD in large N limit ?

* 4£ QCD is extremely complicate.
* 2d QCD in large N limit is simple but nontrivial.
* It is numerically solvable.

2d model of meson

Approach 1: 't Hooft's Lagrangian approach
't Hooft, Nucl. Phys. B75 (1974) 461-470.
Light cone coordinates :

$$
\begin{aligned}
x^{ \pm} & =\left(x^{0} \pm x^{1}\right) / \sqrt{2} \\
x_{ \pm} & =\left(x_{0} \pm x_{1}\right) / \sqrt{2} \\
x_{0} & =x^{0}, x_{1}=-x^{1} \quad \Rightarrow \quad x_{ \pm}=x^{\mp} \\
a \cdot b & =a^{+} b^{-}+a^{-} b^{+}
\end{aligned}
$$

Light-cone gauge:

$$
A^{+}=0 \quad \Rightarrow \quad F^{+-}=\partial^{+} A^{-}, F^{-+}=-\partial^{+} A^{-}
$$

Gamma matrices algebra:

$$
\begin{aligned}
& \gamma^{+} \gamma^{-}+\gamma^{+} \gamma^{-}=2 \\
& \gamma^{+} \gamma^{+}=\gamma^{-} \gamma^{-}=0
\end{aligned}
$$

Lagrangian:

$$
\begin{equation*}
\mathcal{L}_{2 d}=\frac{1}{2} \operatorname{Tr} \partial^{+} A^{-} \partial^{+} A^{-}+\bar{\psi}^{i}\left(i \not \partial-m_{i}+g \gamma^{+} A^{-}\right) \psi^{i} \tag{1}
\end{equation*}
$$

Feynman rules:

$i g \gamma^{+}$
$i 2 g$

Large N limit:

$$
N_{c} \rightarrow \infty, \quad g^{2} N_{c} \rightarrow \text { Const. }
$$

Advantages of $2 \mathbb{Q}$ QCD in Large N limit:

* No gruon self interaction.
* No gluon transverse degree of freedom.
* Only planar diagrams survive.
* No internal quark loop.
* Gluon bas no propagating mode, no gluon radiation.

Irreducible self energy diagram :

$$
-i \Gamma(p)=\xrightarrow{p}
$$

Dressed propagator:

$$
i k^{+}
$$

$$
\overline{2 k^{+} k^{-}-m_{i}^{2}-k^{+} \Gamma(k)}
$$

$$
\xrightarrow{k-}=\xrightarrow{k}+\xrightarrow{\bigcirc}+\ldots
$$

Bootstrap equation:

$$
\begin{equation*}
\Gamma(p)=\frac{-i g^{2}}{\pi^{2}} \int d k^{+} d k^{-} \frac{1}{\left(k^{+}\right)^{2}} \frac{k^{+}+p^{+}}{\left(k^{+}+p^{+}\right)\left(2 k^{-}+2 p^{-}-\Gamma(k+p)\right)-m_{i}^{2}} \tag{3}
\end{equation*}
$$

$$
\begin{gathered}
\int d k^{-} \frac{1}{\left(k^{+}+p^{+}\right)\left(2 k^{-}-\Gamma\left(k^{+}+p^{+}\right)-\frac{m_{i}^{2}}{k^{+}+p^{+}}+i \epsilon\right)}=\frac{i \pi}{2\left|k^{+}+p^{+}\right|} \\
\Downarrow \\
\Gamma\left(p^{+}\right)=\frac{g^{2}}{2 \pi} \int d k^{+} \frac{1}{\left(k^{+}\right)^{2}} \operatorname{sgn}\left(k^{+}+p^{+}\right) \\
\Downarrow \text { IR divergent, cut-off } \lambda<\left|k^{+}\right|<\infty \\
\Gamma\left(p^{+}\right)=\frac{g^{2}}{\pi}\left(\frac{\operatorname{sgn}\left(p^{+}\right)}{\lambda}-\frac{1}{p^{+}}\right)
\end{gathered}
$$

dressed propagator :
\Downarrow

$$
\begin{equation*}
\longrightarrow=\frac{i k^{+}}{2 k^{+} k^{-}+\frac{g^{2}}{\pi}-\frac{g^{2}}{\pi \lambda}\left|k^{+}\right|-m_{i}^{2}} \tag{4}
\end{equation*}
$$

Another bootstrap equation:

quark: $m_{1}, \quad p$ anti-quark: $m_{2}, \quad r-p$
two-particles state: $\quad \psi(p, r)$

$$
M_{i}^{2}=m_{i}^{2}-\frac{g^{2}}{\pi}
$$

$$
\begin{align*}
\psi(p, r)= & \frac{4 g^{2}}{(2 \pi)^{2}} \int d k^{+} d k^{-} \psi(p+k, r) \frac{i}{\left(k^{+}\right)^{2}} \frac{p^{+}}{2 p^{+} p^{-}-\frac{g^{2}}{\pi \lambda}\left|p^{+}\right|-M_{1}^{2}} * \\
& * \frac{p^{+}-r^{+}}{2\left(p^{+}-r^{+}\right)\left(p^{-}-r^{-}\right)-\frac{g^{2}}{\pi \lambda}\left|p^{+}-r^{+}\right|-M_{2}^{2}} \tag{5}
\end{align*}
$$

Defining: $\quad \psi\left(p^{+}, r\right)=\int \psi(p, r) d p^{-}$
Integrating over p^{-}on both sides of (5)

$$
\begin{align*}
& \psi\left(p^{+}, r\right)= \tag{6}\\
& \int d p^{-} \frac{1}{\left(p^{-}-r^{-}\right)-\frac{M_{2}^{2}}{2\left(p^{+}-r^{+}+\right)}-\frac{g^{2}}{2 \pi \lambda}} \\
& * \frac{i g^{2}}{(2 \pi)^{2}} \int d k^{+} \psi\left(p^{+}+k^{+}, r\right) \frac{1}{\left(k^{+}\right)^{2}}
\end{align*}
$$

$$
\int d p^{-} \frac{1}{\left(p^{-}-r^{-}\right)-\frac{M^{2}}{2\left(p^{+}-r^{+}\right)}-\left(\frac{g^{2}}{2 \pi \lambda}-i \epsilon\right) \operatorname{sgn}\left(p^{+}-r^{+}\right)} \frac{1}{p^{-}-\frac{M^{2}}{2 p^{+}}-\left(\frac{g^{2}}{2 \pi \lambda}-i \epsilon\right) \operatorname{sgn}\left(p^{+}\right)} *
$$

The first integral is non-zero only if:

$$
\operatorname{sgn}\left(p^{+}-r^{+}\right)=-\operatorname{sgn}\left(p^{+}\right)
$$

$\psi\left(p^{+}, r\right)=\frac{g^{2}}{2 \pi} \frac{\theta\left(p^{+}\right) \theta\left(r^{+}-p^{+}\right)}{-r^{-}+\frac{M_{1}^{2}}{2 p^{+}}+\frac{M_{2}^{2}}{2\left(r^{+}-p^{+}\right)}+\frac{g^{2}}{\pi \lambda}} \int d k^{+} \frac{\psi\left(p^{+}+k^{+}, r\right)}{\left(k^{+}\right)^{2}}$

Hadamard regularization :

Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Dover Phoenix editions, 1923.

$$
\begin{equation*}
\mathcal{H} \int_{a}^{b} \frac{f(x)}{(x-t)^{2}} d x=\lim _{\lambda \rightarrow 0^{+}}\left(\int_{a}^{t-\lambda} \frac{f(x)}{(x-t)^{2}} d x+\int_{t+\lambda}^{b} \frac{f(x)}{(x-t)^{2}} d x-\frac{2 f(t)}{\lambda}\right) \tag{8}
\end{equation*}
$$

$$
\Downarrow
$$

$$
\begin{equation*}
\int_{a}^{b} d k^{+} \frac{\psi\left(p^{+}+k^{+}, r\right)}{\left(k^{+}\right)^{2}}=\mathcal{H} \int_{a}^{b} d k^{+} \frac{\psi\left(k^{+}+p^{+}, r\right)}{\left(k^{+}\right) 2}+\frac{2 \psi\left(p^{+}, r\right)}{\lambda} \tag{9}
\end{equation*}
$$

substituting (9) into (7)

$$
\begin{equation*}
\left(\frac{M_{1}^{2}}{2 p^{+}}+\frac{M_{2}^{2}}{2\left(r^{+}-p^{+}\right)}\right) \psi\left(p^{+}, r\right)-\frac{g^{2}}{2 \pi} \mathcal{H} \int_{p^{+}}^{r^{+}-p^{+}} d k^{+} \frac{\psi\left(k^{+}+p^{+}, r\right)}{\left(k^{+}\right)^{2}}=r^{-} \psi\left(p^{+}, r\right) \tag{10}
\end{equation*}
$$

Defining new parameters :

$$
\begin{align*}
\alpha_{1,2} & =\frac{\pi M_{1,2}^{2}}{g^{2}} \\
\frac{p^{+}}{r^{+}} & =x \tag{11}\\
2 r^{+} r^{-} & =\frac{g^{2}}{\pi} \mu^{2}
\end{align*}
$$

Equation (10) Gecomes 't Hooft equation:

$$
\begin{equation*}
\mu^{2} \phi(x)=\left(\frac{\alpha_{1}}{x}+\frac{\alpha_{2}}{1-x}\right) \phi(x)-\mathcal{H} \int_{0}^{1} \frac{\phi(y)}{(y-x)^{2}} d y \tag{12}
\end{equation*}
$$

Approach 2: Hamiltonian method in axial gauge
Bars and Green, PRD.17.(1978)537-545
Kalashnikova, Nefediev, and Volodin, Phys. Atom. Nucl.63.(2000)1623-1628
Shifman, Advanced Topics in Quantum Field Theory, 2012
Axial gauge :

$$
A_{1}(t, x)=0
$$

Gamma matrices convention :

$$
\gamma^{0}=\sigma_{3}, \gamma^{1}=i \sigma_{2}, \gamma_{5}=\gamma^{0} \gamma^{1}=\sigma_{1}
$$

Lagrangian:

$$
\begin{equation*}
\mathcal{L}_{2 d}=\frac{1}{2} \operatorname{Tr}\left(\partial_{1} A_{0}\right)^{2}+\bar{\psi}^{i}\left(i \not \partial+g \gamma^{0} A_{0}-m_{i}\right) \psi^{i} \tag{13}
\end{equation*}
$$

Equation of motion:

$$
\begin{equation*}
\left(\partial_{1}\right)^{2} A_{0}^{a}=g \psi^{\dagger} T^{a} \psi^{i} \tag{14}
\end{equation*}
$$

Solution:

$$
\begin{equation*}
A_{0}^{a}(x)=\int d y|x-y| g \psi^{\dagger}(y) T^{a} \psi^{i}(y) \tag{15}
\end{equation*}
$$

Hamiltonian

$$
\begin{align*}
H= & \int d x \psi^{\dagger}\left(-i \gamma_{5} \partial_{1}+\gamma^{0} m_{i}\right) \psi \\
& +\frac{g^{2}}{4} \int d x d y|x-y| \psi^{\dagger}(x) T^{a} \psi(x) \psi^{\dagger}(y) T^{a} \psi(y) \tag{16}
\end{align*}
$$

Dressing fermion field

$$
\begin{equation*}
\psi(t, x)=\int \frac{d k}{2 \pi} e^{i k x}\left(b(k, t) u(k)+d^{\dagger}(-k, t) v(-k)\right) \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
b(k, t)|0\rangle & =d(-k, t)|0\rangle=0, \\
b(k, t)|0\rangle & =|k\rangle, \\
d(-k, t)|0\rangle & =|-k\rangle .
\end{aligned}
$$

commutation relations:

$$
\begin{aligned}
\left\{b(p, t), b^{\dagger}(q, t)\right\} & =\left\{d(-p, t), d^{\dagger}(-q, t)\right\}=2 \pi \delta(p-q) \\
\{b(p, t), b(q, t)\} & =\{d(-p, t), d(-q, t)\}=\ldots=0
\end{aligned}
$$

Spinors:

$$
\begin{align*}
& T(k)=-\frac{1}{2} \theta(k) \gamma^{1}=\left(\begin{array}{cc}
\cos (\theta / 2) & -\sin (\theta / 2) \\
\sin (\theta / 2) & \cos (\theta / 2)
\end{array}\right) \\
& u(k)=\binom{\cos (\theta / 2)}{\sin (\theta / 2)}=T(k)\binom{1}{0} \tag{18}\\
& v(k)=\binom{-\sin (\theta / 2)}{\cos (\theta / 2)}=T(k)\binom{0}{1} .
\end{align*}
$$

Normal ordered Hamiltonian

$$
\begin{align*}
& H=H_{0}+: H_{2}:+: H_{4}: \tag{19}\\
& H_{0}=\int d x \int \frac{d p}{2 \pi} \operatorname{Tr}\left(\left(\gamma_{5} p+\gamma^{0} m\right) \Lambda_{-}(p)+\frac{1}{4} \int d k \frac{\Lambda_{+}(k) \Lambda_{-}(k)}{(p-k)^{2}}\right) \\
& : H_{2}:=\int d x: \psi^{\dagger}(x)\left(-i \gamma_{5} \partial_{x}+\gamma^{0} m\right) \psi(x): \\
& \quad-\int d x d y d k \frac{|x-y|}{4}: \psi^{\dagger}(x)\left(\Lambda_{+}(k)-\Lambda_{-}(k)\right) \psi(y): e^{i k(x-y)} \\
& : H_{4}:=-\frac{g^{2}}{4} \int d x d y: \psi^{\dagger}(x) T^{a} \psi(x) \psi^{\dagger}(y) T^{a} \psi(y):|x-y| \\
& \Lambda_{ \pm}(p)=T(p) \frac{1 \pm \gamma^{0}}{2} T^{\dagger}(p)
\end{align*}
$$

Diagonalize Hamiltonian

$$
\begin{gather*}
: H_{2}:=\int \frac{d k}{2 \pi} E(k)\left(b^{\dagger}(k) b(k)+d^{\dagger}(-k) d(-k)\right) \tag{20}\\
\int d x: \psi^{\dagger}(x)\left(-i \gamma_{5} \partial_{x}+\gamma^{0} m\right) \psi(x): \\
=\int d p\left(\left(p \sin \theta_{p}+m \cos \theta_{p}\right) b^{\dagger}(p) b(p)+\left(p \cos \theta_{p}-m \sin \theta_{p}\right) b^{\dagger}(p) d^{\dagger}(-p)\right. \\
\left.+\left(p \cos \theta_{p}-m \sin \theta_{p}\right) d(-p) b(p)+\left(p \sin \theta_{p}+m \cos \theta_{p}\right) d^{\dagger}(-p) d(-p)\right) \\
\int d x d y d k \frac{|x-y|}{4}: \psi^{\dagger}(x)\left(\Lambda_{+}(k)-\Lambda_{-}(k)\right) \psi(y): e^{i k(x-y)} \\
=\int d p \int \frac{d k}{(p-k)^{2}}\left(\sin ^{2}\left(\frac{\theta_{p}-\theta_{k}}{2}\right) b^{\dagger}(p) b(p)+\frac{\sin \left(\theta_{p}-\theta_{k}\right)}{2} b^{\dagger}(p) d^{\dagger}(-p)\right. \\
\left.\quad+\frac{\sin \left(\theta_{p}-\theta_{k}\right)}{2} d(-p) b(p)-\cos ^{2}\left(\frac{\theta_{p}-\theta_{k}}{2}\right) d^{\dagger}(-p) d(-p)\right)
\end{gather*}
$$

Integral is divergent at the IR region, all infinite terms must be regularized, only finite terms are left.

$$
f \equiv \mathcal{H} \int
$$

Gap equation for Bogolyubov-Valatin angle

$$
\begin{equation*}
p \cos \theta(p)-m \sin \theta(p)=\frac{1}{4} f d k \frac{\sin [\theta(p)-\theta(k)]}{(p-k)^{2}} \tag{21}
\end{equation*}
$$

Dispersion relation

$$
\begin{equation*}
E(p)=p \sin \theta(p)+m \cos \theta(p)+\frac{1}{4} f d k \frac{\cos [\theta(p)-\theta(k)]}{(p-k)^{2}} \tag{22}
\end{equation*}
$$

color singlet bilinear operators:

$$
\begin{align*}
B\left(p, p^{\prime}\right) & =\frac{1}{\sqrt{N_{C}}} b_{i}^{\dagger}(p) b_{i}\left(p^{\prime}\right), \\
D\left(p, p^{\prime}\right) & =\frac{1}{\sqrt{N_{C}}} d_{i}^{\dagger}(-p) d_{i}\left(-p^{\prime}\right), \\
M\left(p, p^{\prime}\right) & =\frac{1}{\sqrt{N_{C}}} d_{i}(-p) b_{i}\left(p^{\prime}\right), \tag{23}\\
M^{\dagger}\left(p, p^{\prime}\right) & =\frac{1}{\sqrt{N_{C}}} b_{i}^{\dagger}(-p) d_{i}^{\dagger}\left(p^{\prime}\right)
\end{align*}
$$

Commutation relations in Large N limit:

$$
\begin{align*}
{\left[M\left(p, p^{\prime}\right), M^{\dagger}\left(q, q^{\prime}\right)\right] } & =(2 \pi)^{2} \delta(p-q) \delta\left(p^{\prime}-q^{\prime}\right) \\
{\left[B\left(p, p^{\prime}\right), X\left(q, q^{\prime}\right)\right] } & =0 \\
{\left[D\left(p, p^{\prime}\right), X\left(q, q^{\prime}\right)\right] } & =0 \tag{24}\\
X\left(q, q^{\prime}\right) & \in\left\{B, D, M, M^{\dagger}\right\}
\end{align*}
$$

Ansatz :

Lenz, Thies, Levit and Yazaki, Ann.Phys.(N.Y.)208.(1991)1-89

$$
\begin{align*}
& B\left(p, p^{\prime}\right)=\frac{1}{\sqrt{N_{C}}} \int \frac{d q}{2 \pi} M^{\dagger}(q, p) M\left(q, p^{\prime}\right) \\
& D\left(p, p^{\prime}\right)=\frac{1}{\sqrt{N_{C}}} \int \frac{d q}{2 \pi} M^{\dagger}(p, q) M\left(p^{\prime}, q\right) \tag{25}
\end{align*}
$$

$: H_{2}:+: H_{4}$:
$=\int \frac{d Q d q}{(2 \pi)^{2}}(E(p)+E(Q-p)) M^{\dagger}(p-Q, p) M(p-Q, p)$
$-\int \frac{d Q d q}{(2 \pi)^{2}} \frac{1}{4} f \frac{d k}{(p-k)^{2}}\left(2 C(p, k, Q) M^{\dagger}(p-Q, p) M(k-Q, k)+\right.$

$$
\left.+S(p, k, Q)\left[M(p, p-Q) M(k-Q, k)+M^{\dagger}(p, p-Q) M^{\dagger}(k-Q, k)\right]\right)
$$

$$
\begin{aligned}
& C(p, k, Q)=\cos \frac{\theta(p)-\theta(k)}{2} \cos \frac{\theta(Q-p)-\theta(Q-k)}{2} \\
& S(p, k, Q)=\sin \frac{\theta(p)-\theta(k)}{2} \sin \frac{\theta(Q-p)-\theta(Q-k)}{2}
\end{aligned}
$$

Define operators :

$$
\begin{align*}
& m_{n}^{\dagger}(Q)=\int \frac{d q}{2 \pi}\left(M^{\dagger}(q-Q, q) \phi_{n}^{+}(q, Q)+M(q, q-Q) \phi_{n}^{-}(q, Q)\right) \\
& m_{n}(Q)=\int \frac{d q}{2 \pi}\left(M(q-Q, q) \phi_{n}^{+}(q, Q)+M^{\dagger}(q, q-Q) \phi_{n}^{-}(q, Q)\right) \tag{26}
\end{align*}
$$

Normalization conditions:

$$
\begin{align*}
& \int \frac{d q}{2 \pi}\left(\phi_{m}^{+}(q, Q) \phi_{n}^{+}(q, Q)-\phi_{m}^{-}(q, Q) \phi_{n}^{-}(q, Q)\right)=\delta_{m n} \\
& \int \frac{d q}{2 \pi}\left(\phi_{n}^{+}(q, Q) \phi_{m}^{-}(q, Q)-\phi_{n}^{-}(q, Q) \phi_{m}^{+}(q, Q)\right)=0 \tag{27}
\end{align*}
$$

completeness conditions :

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\phi_{n}^{+}(q, Q) \phi_{n}^{+}(k, Q)-\phi_{n}^{-}(q, Q) \phi_{n}^{-}(k, Q)\right)=2 \pi \delta(q-k) \\
& \sum_{n=0}^{\infty}\left(\phi_{n}^{+}(q, Q) \phi_{n}^{-}(k, Q)-\phi_{n}^{-}(q, Q) \phi_{n}^{+}(k, Q)\right)=0
\end{aligned}
$$

(28)

Commutation relations:

$$
\begin{aligned}
& {\left[m_{n}(Q), m_{m}^{\dagger}\left(Q^{\prime}\right)\right]=2 \pi \delta\left(Q-Q^{\prime}\right) \delta_{n m}} \\
& {\left[m_{n}(Q), m_{m}\left(Q^{\prime}\right)\right]=\left[m_{n}^{\dagger}(Q), m_{m}^{\dagger}\left(Q^{\prime}\right)\right]=0}
\end{aligned}
$$

Diagonalize Hamiltonian:

$$
: H_{2}:+: H_{4}:=\frac{1}{2} \sum_{n=0}^{\infty} \int \frac{d Q}{2 \pi} Q_{n}^{0}(Q) m_{n}^{\dagger}(Q) m_{n}(Q)
$$

Bars-Green equations:
$\left(E(p)+E(Q-p)-Q^{0}\right) \phi^{+}(p, Q)=\frac{1}{2} f \frac{d k}{(p-k)^{2}}\left(C(p, k, Q) \phi^{+}(k, Q)-S(p, k, Q) \phi^{-}(k, Q)\right)$
$\left(E(p)+E(Q-p)+Q^{0}\right) \phi^{-}(p, Q)=\frac{1}{2} f \frac{d k}{(p-k)^{2}}\left(C(p, k, Q) \phi^{-}(k, Q)-S(p, k, Q) \phi^{+}(k, Q)\right)$

Relation :

$\phi(p, Q)=T(p)\left(\frac{1+\gamma^{0}}{2} \gamma_{5} \phi^{+}(p, Q)+\frac{1-\gamma^{0}}{2} \gamma_{5} \phi^{-}(p, Q)\right) T^{\dagger}(Q-p)$
Explanation:
Moving forward:

$$
\phi^{+}(p, Q)
$$

Moving backward:

$$
\phi^{-}(p, Q)
$$

Bars-Green Claim:

Bars-Green equations are equivalent to 't Hoof equation
$Q \rightarrow \infty \quad \Rightarrow \quad \phi^{-} \rightarrow 0$ and $\phi^{+} \rightarrow \phi$

Static case :

Li, Wilets and Birse, J.Phys.G.13(1987)915-923
Bars-Green equations:

$$
\begin{aligned}
& \left(2 E(p)-Q^{0}\right) \phi^{+}(p)=\frac{1}{2} f \frac{d k}{(p-k)^{2}}\left(C(p, k) \phi^{+}(k)-S(p, k) \phi^{-}(k)\right) \\
& \left(2 E(p)+Q^{0}\right) \phi^{-}(p)=\frac{1}{2} f \frac{d k}{(p-k)^{2}}\left(C(p, k) \phi^{-}(k)-S(p, k) \phi^{-}(k)\right)
\end{aligned}
$$

Numerical solution strategies:

1. Solving gap equation to get $\theta(p)$
2. Using dispersion equation to get $E(p)$
3. Finding a basis of functions.
4. Obtaining meson spectrum and related wave functions.

n	$m=0.18$	$m=0.56$	$m=1.0$	$m=1.61$	$m=2.11$
0	0.88	1.78	2.70	3.92	4.91
1	2.73	3.39	4.16	5.26	6.17
2	4.00	4.54	5.21	6.21	7.06
3	5.00	5.47	6.09	7.02	7.84
4	5.86	6.28	6.85	7.73	8.51
5	6.61	7.00	7.54	8.38	9.13
6	7.30	7.66	8.17	8.98	9.71

Meson spectra with different quark masses m

functions of ground state of meson with different quark masses
 functions of excited states of meson with quark mass $m=0.18$

Numerical results:
quark mass:
$m \rightarrow \infty \Rightarrow \phi^{-} \rightarrow 0$
bigher excited state :
$n \rightarrow \infty \Rightarrow \phi^{-} \rightarrow 0$
ours results :
Jia, Liang, Li, and Xiong, in preparation

1. Solving gap equation to get $\theta(p)$
2. Using dispersion equation to get $E(p)$
3. Finding a basis of functions for moving mesons.
4. Obtaining meson spectra and related wave functions. $\sqrt{ }$

Results beyond LWB :

1. Tinding a basis of functions for moving mesons.
2. Meson spectra and related wave functions of zero quark mass.
3. Verified Bars-Green's claim.

Bogolyubov-Valatin angle for different quarks

Relevant Feymman diagrams

X.D. Ji, J.H. Zhang,PRD92,(2015)034006

Taking Feynman gauge

light-cone PD in 2d QCD

$$
\begin{aligned}
& q_{a}(x)=\left(\frac{\mu^{2} e^{\gamma_{E}}}{4 \pi}\right)^{\epsilon} f \frac{2^{2 \epsilon+1} \pi^{\epsilon+1} m^{-2(\epsilon+1)}(1-x)^{-2 \epsilon-3}(x((x \epsilon+2)+\epsilon) \csc (\pi \epsilon)}{\Gamma(-\epsilon)} \\
& z_{a}(x)=\left(\frac{\mu^{2} e^{\gamma_{E}}}{4 \pi}\right)^{\epsilon} \frac{f}{2 m^{2}} \delta(x-1) \\
& q_{b}(x)=-\left(\frac{\mu^{2} e^{\gamma_{E}}}{4 \pi}\right)^{\epsilon} f \frac{x 2^{2 \epsilon+1} \pi^{\epsilon+1} m^{-2(\epsilon+1)}(1-x)^{-2 \epsilon-3} \csc (\pi \epsilon)}{\Gamma(-\epsilon)} \\
& z_{b}(x)=-\left(\frac{\mu^{2} e^{\gamma_{E}}}{4 \pi}\right)^{\epsilon} \frac{f}{m^{2}} \delta(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& q_{d}(x)=0 \\
& z_{d}(x)=0
\end{aligned}
$$

Quasi PDF in $2 \mathbb{d}$ QCD

Too complicated to be showed bere.
Sharing the same IR structure as light-cone PDF except some terms $\frac{m}{p^{z}}$

Matching condition

$$
\begin{gathered}
\tilde{q}\left(x, \frac{\mu}{p^{z}}\right)=\int \frac{d y}{|y|} Z\left(\frac{x}{y}, \frac{\mu}{p^{z}}\right) q(y) \\
\left.Z\left(\frac{x}{y}\right)\right|_{p^{z} \gg m}=\delta\left(\frac{x}{y}-1\right)
\end{gathered}
$$

conclusions and outlooks:

* Equivalence of different approaches.
- Bars-Green's claim is right.
- Goldstone boson exists in $2 \mathbb{d}$ QCD at large N limit.
- Generalized Bars-Green equation for two different flavor quarks.
* Nomperturbative QCD variables in HQET will be calculated.

Thanks for your attention

