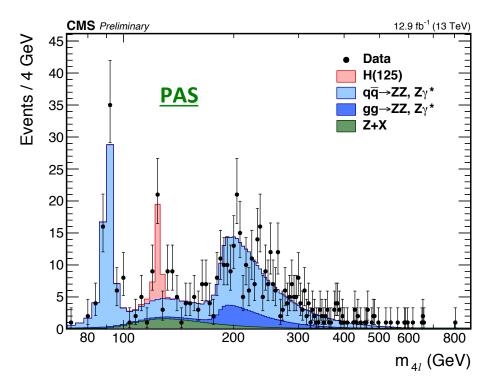


Search for heavy neutral Higgs in HZZ4L final state

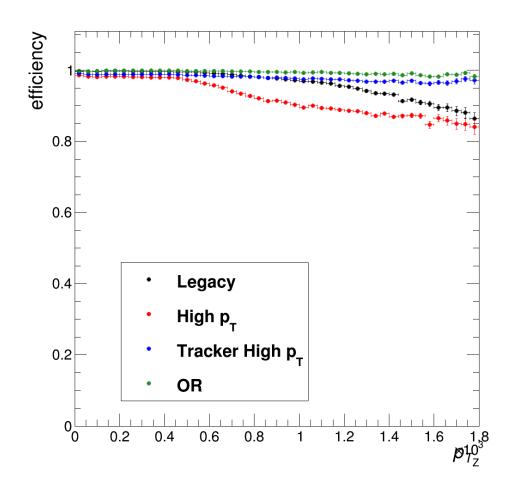
Tongguang Cheng Aug 24th, 2016 Heifei, China

Institute of High Energy Physics Chinese Academy of Sciences



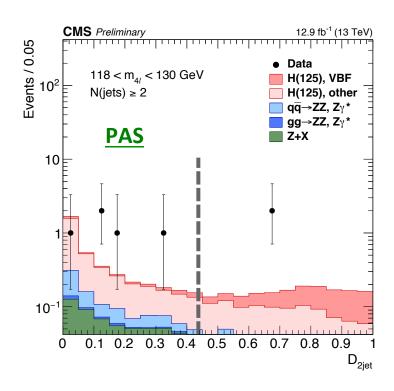
Outline

- This talk will present the published results of searching for heavy neutral resonances using CMS 2016 ICHEP data in ZZ4L final state
 - Higgs to ZZ to four leptons (lepton = e, μ) HIG-16-033
- Plan targeting end-of-year data will also be discussed

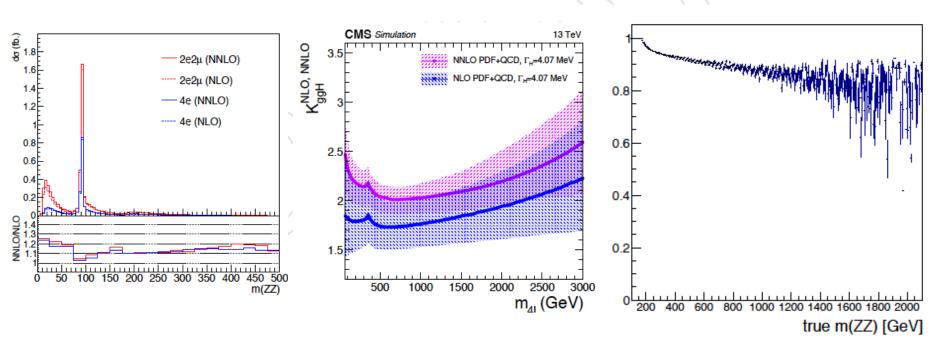


Analysis strategy: event selection

- Analysis uses 12.9 fb⁻¹ data collected in 2016 with c.o.m. energy at 13TeV
- Four isolated leptons grouped into 2e2μ, 4e and 4μ final states
 - Electron uses MVA-based ID to gain signal efficiency
 - Muon ID is optimized to avoid loosing efficiency in boost regime (muon p_T>200GeV)
- Include an extra category with relaxed selected electron to gain signal efficiency
- No events are observed with mass₄₁ > 850GeV

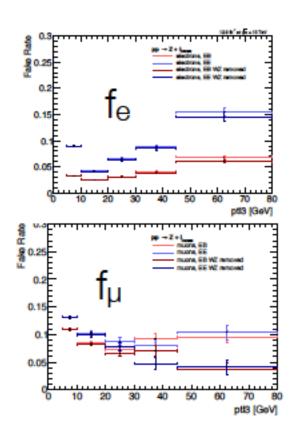

Analysis strategy: muon ID in the boost regime

Analysis strategy: event categorization

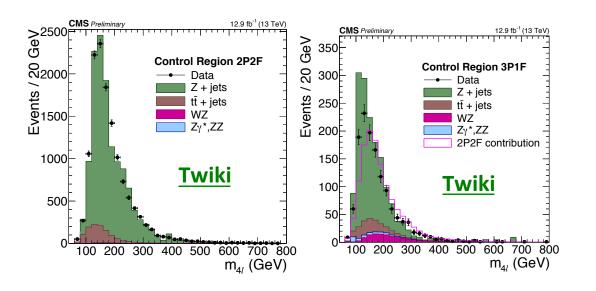

- To separate gluon fusion and VBF production, a matrix-element based discriminant is used.
- The discriminant is used for both measurements for ~125GeV Higgs and high mass resonance search.
- VBF category is defined by events satisfy cut on D_{2iet}
 - mass₄₁ dependent cut is used for high mass search

Analysis strategy: background estimation

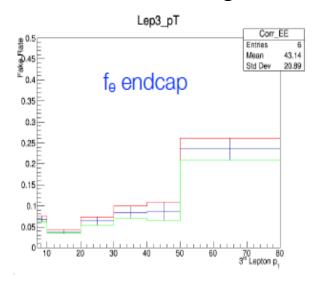
- qqZZ + ggZZ : estimate from MC
 - Mass dependent K factor (NNLO/NLO for qqZZ, NNLO/NLO for ggZZ) are applied
 - NLO electroweak corrections are applied on qqZZ

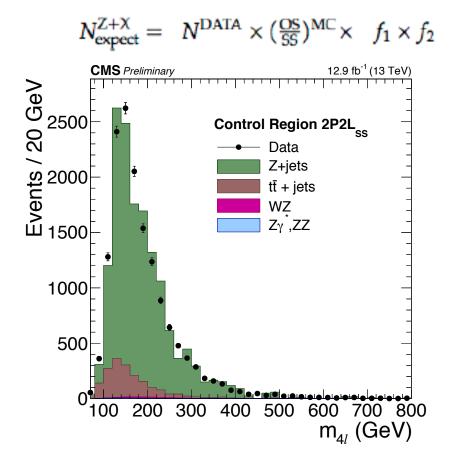


Analysis strategy: background estimation


- Z+X: fake rate method using data in the control region
 - Control region is defined as two leptons from (leading) Z decay satisfy the final HZZ4L selection, plus two additional either opposite-sign(OS) or same-sign (SS) leptons satisfy relaxed requirements.
 - Electron/muon fake rates are defined correspondingly as the efficiency of "relaxed" lepton passing the final selection criteria are measured for OS/SS method separately.
 - Fake rate is measured in Z+1 "relaxed" lepton region in data
 - OS: Z is selected as m_{II} tightly around Z mass peak
 - SS: Z is selected as the leading Z in Higgs decay (40GeV<m_{II}<120GeV)

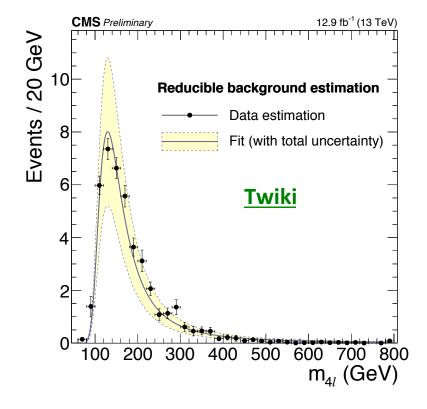
Analysis strategy: Z+X background estimation – OS method


$$N_{\rm SR}^{bkg} = \sum \frac{f_i}{(1-f_i)} (N_{\rm 3P1F} - N_{\rm 3P1F}^{\rm bkg} - N_{\rm 3P1F}^{\rm ZZ}) + \sum \frac{f_i}{(1-f_i)} \frac{f_j}{(1-f_i)} N_{\rm 2P2F}$$

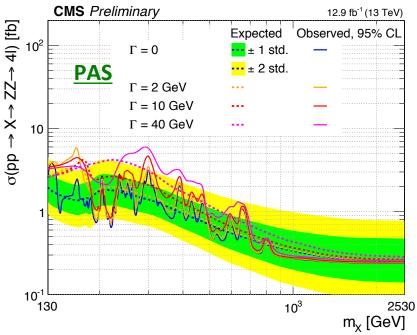


Analysis strategy: Z+X background estimation – SS method

Electron fake rate is corrected with number of missing hits.



Analysis strategy: background estimation


- Z+X: fake ratio method from data control region
 - Estimations from opposite-sign(OS) or same-sign (SS) are combined to give the final Z+X background estimation

Results: cross section upper limit

- An unbinned maximum likelihood fit of the m_{4l} distribution is performed over the full range between 100 and 3000GeV.
- The fraction of VBF and VH production f_{VBF} can be either fixed to a certain value or left unconstrained in the fit when scan over of m_{4l} spectrum.
- Limits on the pp->X->ZZ->4l cross section are set as a function of m_{χ} and Γ_{χ} with f_{VBF} unconstrained are scanned from 130GeV to 2.5TeV.

Plan targeting end-of-year: kinematic refitting

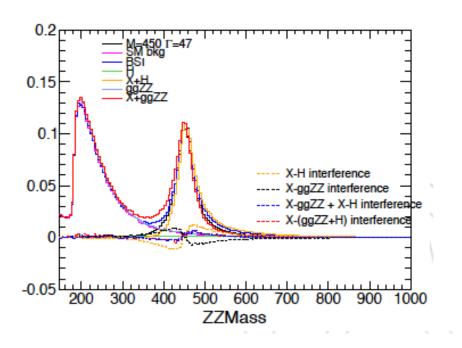
- In the high mass regime, Z boson has enough phase space to decay on-shell
 - For 130GeV<mass₄<~200GeV: one Z can decay on-shell
 - For mass₄>200GeV : both Z can decay on-shell
- Using (Breit-Wigner) Z mass constrain can be applied to refit the lepton momenta

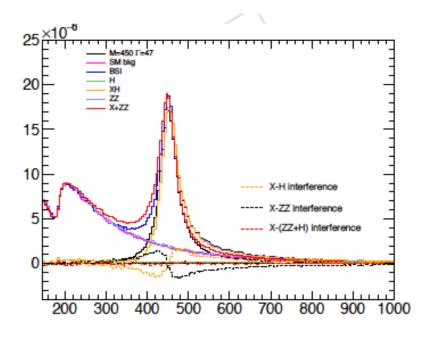
$$L(p_{\mathrm{T}}^{1}, p_{\mathrm{T}}^{2} | p_{\mathrm{T}}^{reco1}, \sigma p_{\mathrm{T}}^{1}, p_{\mathrm{T}}^{reco2}, \sigma p_{\mathrm{T}}^{2}) = \operatorname{Gauss}(p_{\mathrm{T}}^{reco1} | p_{\mathrm{T}}^{1}, \sigma p_{\mathrm{T}}^{1}) \cdot \operatorname{Gauss}(p_{\mathrm{T}}^{reco2} | p_{\mathrm{T}}^{2}, \sigma p_{\mathrm{T}}^{2}) \cdot L(m_{12} | m_{\mathrm{Z}}, \Gamma_{\mathrm{Z}})$$

- Lepton resolution will be improved.
- Background shape will not be bias.
- qqZZ/ggZZ : leptons are also from Z decay.
- Z+X: much less important when $mass_{4l} > 200$ GeV. The effect of refitting on fake leptons can be studied using control region data.

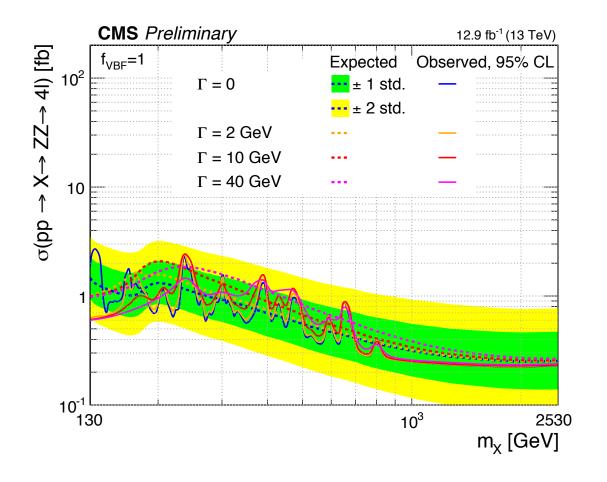
Plan targeting end-of-year: trackless electron (TLE)

- The major issues with HZZ4L is its low statistics.
- TLE electrons avoid inefficiency due to track finding / sc-track matching
- TLE ID :
 - The same MVA training algorithm as regular electron ID
 - Training variables: cluster shape, PF Iso, pixel veto (conversion)
 - Need to have good control of much larger background due to introducing TLE and estimate the gain




Summary

- Analyses of searching for high mass resonance decay to ZZ-tofour-lepton, are updated with 12.9 fb⁻¹ data collected by CMS in 2016.
- No significant excess is observed under a few hundred GeV to TeV resonance assumption. Upper limits on the cross section are set as a function of resonance mass and width.
- Data with full 2016 run are expected to be at least ~30fb⁻¹
 - There is still room for analysis improvement.
 - Stay tune with results with three times statistics in the near future!


Back up

Interference effect

Limits assuming pure VBF production

