Precision Higgs Physics

Li Lin Yang
 Peking University

中国物理学会高能物理分会第十二届全国粒子物理学术会议

中国科学技术大学
安徽•合肥

$$
8.22-26,2016
$$

Higgs discovery

\square First elementary(?) spin-0 particle
■ SM: first EFT which might be valid up to exponentially high scales (too good to be true?)
\square Two renormalizable interactions (Yukawa and Φ^{4}) realized in fundamental theory of Nature
${ }^{\square}$ A new era for particle physics!

Open questions

* Is it (NOT) the SM Higgs?
* Is it elementary or composite?
* Are there more than one Higgs bosons?
* Phase transition? Vacuum stability? Naturalness?
* Relations to inflation / dark matter / matter-antimatter asymmetry / neutrino masses / ... ?

Precision measurements of Higgs properties!

Higgs boson in the SM

fermion $\frac{m_{f}}{v} \bar{f} f h$
gauge $\quad \frac{m_{W}^{2}}{v^{2}} W_{\mu}^{+} W_{-}^{\mu}(v+h)^{2}+\frac{m_{Z}^{2}}{2 v^{2}} Z_{\mu} Z^{\mu}(v+h)^{2}$
potential $\quad \frac{m_{h}^{2}}{2} h^{2}+\frac{m_{h}^{2}}{2 v} h^{3}+\frac{2 m_{h}^{2}}{v^{2}} h^{4}$

simple, elegant! predictive, testable!

Beyond SM: Higgs EFT

Low energy approximation to physics at high scales

Theory vs. data

Remarkable agreements based upon high precision calculations and measurements

Experimental error approaching theoretical uncertainty (NNLO+NNLL)

Theoretical uncertainty

ATLAS and CMS: 1606.02266

$$
\mu=1.09_{-0.10}^{+0.11}=1.09_{-0.07}^{+0.07}(\text { stat })_{-0.04}^{+0.04}(\text { expt }){ }_{-0.03}^{+0.03}(\text { thbgd })_{-0.06}^{+0.07}(\text { thsig })
$$

LHC HXSWG report 3

Theoretical uncertainty

Improved precision!

$g g \rightarrow H$

Huge QCD corrections

Reason well-understood: $\left[\frac{\alpha_{s}}{2 \pi} C_{A} \ln ^{2}\left(\frac{-m_{H}^{2}}{m_{H}^{2}}\right)\right]^{n}$

Ahrens, Becher, Neubert, LLY: 0808.3008

 Ahrens, Becher, Neubert, LLY: 0809.4283, 1008.3162

Resummed results hint at lower μ_{r} and $\mu_{\mathrm{f}}\left(\mathrm{m}_{\mathrm{H}} / 2\right.$ instead of $\left.\mathrm{m}_{\mathrm{H}}\right)$ for fixed-order calculations; now widely adopted!

See also Wang, Wu, Brodsky, Mojaza (1605.02572) for PMC scale setting

$\mathrm{gg} \rightarrow \mathrm{H}:$ NNNLO

Anastasiou, Duhr, Dulat, Herzog, Mistlberger: 1503.06056

σ / pb	2 TeV	7 TeV	8 TeV	13 TeV	14 TeV
$\mu=\frac{m_{H}}{2}$	$0.99_{-4.65 \%}^{+0.43 \%}$	$15.31_{-3.08 \%}^{+0.31 \%}$	$19.47_{-2.99 \%}^{+0.32 \%}$	$44.31_{-2.64 \%}^{+0.31 \%}$	$49.87_{-2.61 \%}^{+0.32 \%}$
$\mu=m_{H}$	$0.94_{-7.35 \%}^{+4.87 \%}$	$14.84_{-5.27 \%}^{+3.18 \%}$	$18.90_{-5.02 \%}^{+3.08 \%}$	$43.14_{-4.45 \%}^{+2.71 \%}$	$48.57_{-4.24 \%}^{+2.68 \%}$

- Well-consistent with NNLO+NNNLL
- Small correction and small uncertainty for $\mu=m_{H} / 2$
- Theoretical error now dominated by other sources: PDF, $\alpha_{s,}$ top and bottom masses, etc.

Higgs+jet: high $\mathbf{p}_{\mathbf{T}}$ Higgs

NNLO for Hj

- Validation of various NNLO subtraction methods for colored final states
- Shape only changes slightly: good news for searches!

Boughezal, Caola, Melnikov, Petriello, Schulze: 1302.6216; 1504.07922;
Chen, Gehrmann, Glover, Jaquier: 1408.5325; Boughezal, Focke, Giele, Liu, Petriello: 1505.03893;

See talk by Dr. Xuan Chen Chen, Cruz-Martines, Gehrmann, Glover, Jaquier: 1607.08817

Top and Higgs

ATLAS and CMS: 1606.02266
 modified top Yukawa (c_{t}) vs. new particles in the loop (c_{g})

- Direct information on top Yukawa
- Statistics limited (Run 2 physics)

See also Cao, Chen, Liu (1602.01934)

Theoretical uncertainty

(again)

NLO EW: Zhang, Ma, Zhang,
Chen, Guo (1407.1110)

Resummation for top pairs

Ferroglia, Neubert, Pecjak, LLY: 0907.4791 (PRL)
Ahrens, Ferroglia, Neubert, Pecjak, LLY: 1003.5827; 1105.5824; 1106.6051
Ferroglia, Pecjak, LLY: 1205.3662; 1207.4798; 1306.1537
Zhu, Li, Li, Shao, LLY: 1208.5774 (PRL); 1307.2464
Pecjak, Scott, Wang, LLY: 1601.07020 (PRL)

$\mathrm{pp} \rightarrow \mathrm{tt}$ very similar to $\mathrm{pp} \rightarrow \mathrm{ttH}$!

ttH: approximate NNLO

Broggio, Ferroglia, Pecjak, Signer, LLY: 1510.01914
Exact NNLO for ttH unlikely to be available very soon!

First fully differential prediction beyond NLO
NLO+NNLL resummation in progress

Higgs self-couplings

How can we verify these two interactions?

Important for EW phase transition as well as vacuum stability!

Higgs pair \& self-coupling

However, notoriously difficult to detect!
HL-LHC and 100 TeV physics!

Detecting HH production
 Requires combination of various decay channels!

Dolan et al.: 1206.5001; Papaefstathiou, LLY, Zurita: 1209.1489; Baglio et al.: 1212.5581; Barr et al.: 1309.6318; de Lima et al.:
Hot topic since 1404.7131; Barr et al.: 1412.7154; Li, Li, Yan, Zhao: 1503.07616;

Papaefstathiou: 1504.04621; Kotwal et al.: 1504.08042; He, Ren, Yao: 1506.03302; Lü, Du, Fang, He, Zhang: 1507.02644; Zhao, Li, Li, Yan: 1604.04329; Kling et al.: 1607.07441 ; ...; sorry for limited space!

HH constraints on EFT

Rate sensitive to new physics

Goertz, Papaefstathiou, LLY, Zurita: 1410.3471

Can be used to constrain EFT parameters

See also: Azatov, Contino, Panico, Son (1502.00539); He, Ren, Yao (1506.03302);
Cao, Yan, Zhang, Zhang (1508.06512)

HH in new physics models

Heavy particles decaying to Higgs typically exist in new physics models:
greatly enhance the rate via resonance effect

Liu, Wang, Zhu: 1310.3634

Many contributions from Chinese physicists!

Kang, Li, Li, Liu, Shu: 1301.0453
Cao, Heng, Shang, Wan, Yang: 1301.6437
Chen, Du, Fang, Lü: 1312.7212
Berger, Giddings, Wang, Zhang: 1406.6054
Cao, Li, Shang, Wu, Zhang: 1409.8431
Han, Ding, Liao: 1502.05242; 1506.08996
Kang, Ko, Li: 1504.04128
Wu, Yang, Yuan, Zhang: 1504.06932
He, Ren, Yao: 1506.03302
Han, Wang, Yang: 1509.02453
Huang, Gu, Yin, Yu, Zhang: 1511.03969
Zhang, Ma, Zhang, Li, Guo, Chen: 1512.01766 Kang: 1606.01531
Bian, Chen: 1607.02703
Sorry for limited space!

NNLO for Higgs pair

de Florian, Mazzitelli: 1309.6594; de Florian, Grazzini et al.: 1606.09519;
See also Shao, Li, Li, Wang (1301.1245) for NLO+NNLL resummed prediction and Ling, Zhang, Ma, Guo, Li, Li (1401.7754) for NNLO in VBF

$\sqrt{s}[\mathrm{TeV}]$	$\sigma_{\mathrm{LO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$\sigma_{\mathrm{NNLO}}[\mathrm{fb}]$
13	$13.8059(13)_{-22.5 \%}^{+31.5 \%}$	$25.829(3)_{-15.4 \%}^{+17.8 \%}$	$30.38(3)_{-7.7 \%}^{+5.2 \%}$
14	$17.0778(16)_{-22.1 \%}^{+30.7 \%}$	$31.934(3)_{-15.1 \%}^{+17.5 \%}$	$37.52(4)_{-7.6 \%}^{+5.2 \%}$

~20\% correction

Papaefstathiou, LLY, Zurita: 1209.1489

However, tagging $\mathrm{H} \rightarrow$ bb typically requires jet substructure techniques!

High $\mathrm{p}_{\text {t }}$ to suppress
QCD backgrounds Validity of HEFT?

Higgs pair at NLO with top-mass dependence

A highly non-trivial calculation!

$$
\sigma^{\mathrm{NLO}}=27.80_{-12.8 \%}^{+13.8 \%} \mathrm{fb}
$$

14\% smaller than Bornimproved HEFT result

Prospect of observing this process at LHC reduced!

Borowka, Greiner, Heinrich et al.: 1604.06447

Higgs self-coupling from ratios of cross sections

- NNLO corrections to HH cross section are large, but suffer from uncertainties related to top-mass
- May use ratios of cross sections to reduce theoretical uncertainties!

$$
C_{H H}=\frac{\sigma(g g \rightarrow H H)}{\sigma(g g \rightarrow H)}
$$

- Now known with exact topmass dependence at NLO!
- Smaller higher order corrections and PDF/ $\boldsymbol{\alpha}_{\text {s }}$ dependences

Alternatives: $\mathbf{H H}+\mathbf{X}$?

Complementary to $\mathrm{gg} \rightarrow \mathrm{H}$

Additional handle: allows for bbbb final state (largest BR)
NNLO for WHH: Li, Wang (1607.06382)

Other possibilities (e.g., HHjj and HHtt): Dolan, Englert, Greiner, Spannowsky (1310.1084); Englert, Krauss, Spannowsky, Thompson (1409.8074); Liu, Zhang (1410.1855); Ling, Zhang, Ma, Guo, Li, Li (1410.7754); He, Ren, Yao (1506.03302)

Higgs width

$\Gamma_{\mathrm{H}} \sim 4 \mathrm{MeV}$ in SM : impossible for direct measurement

Combining on-shell and off-shell modes!

Kauer, Passarino: 1206.4803
Caola, Melnikov: 1307.4935
Campbell, Ellis, Williams: 1311.3589
Li, Li, Shao, Wang: 1504.02388
Cao, Chen, Liu: 1602.01934

Towards Higgs factories

High precision measurements of ZH cross section (and HZZ coupling) at CEPC

Z decay mode	$\Delta M_{H}(\mathrm{MeV})$	$\Delta \sigma(Z H) / \sigma(Z H)$	$\Delta g(H Z Z) / g(H Z Z)$
$e e$	14	2.1%	
$\mu \mu$	6.5	0.9%	
$e e+\mu \mu$	5.9	0.8%	0.4%

$q \bar{q}$	0.65%	0.32%
$e e+\mu \mu+q \bar{q}$	0.51%	0.25%

Even higher accuracies claimed by FCC-ee!
Bicer et al.: 1308.6176;
d'Enterria: 1601.06640; 1602.05043

Precision measurements and new physics

Lots of discussions on probing new physics using precision measurements at Higgs factories; sorry that I can't cover all!

Ge, He, Xiao: 1603.03385

Probing new physics scales

Huang, Gu, Yin, Yu, Zhang: 1511.03969

Testing EWPT

Indirect probe of Higgs self-coupling

McCullough: 1312.3322

Model-dependent: requires good knowledges of HZZ and Htt couplings!

Shen, Zhu: 1504.05626

$\sqrt{s}(\mathrm{GeV})$

Precision theory for precision measurements

How well do we know $\sigma(Z H)$ in the $S M$?
NLO weak corrections known for decades

Fleischer, Jegerlehner (1983); Kniehl (1992); Denner, Küblbeck, Mertig, Böhm (1992)
$\sim-3 \%$ for 240 GeV
QED corrections also negative; size depends on cut on photon energy

No improvement was attempted since then (possibly because LEP2 didn't find the Higgs ©)

Precision theory for

precision measurements

How well do we know $\sigma(Z H)$ in the $S M$?
Update for a closely related process: $\mathrm{H} \rightarrow \mathrm{ZZ}^{*} \rightarrow \mathrm{Zl}^{+}{ }^{-}$

Towards NNLO σ (ZH)

Gong, Li, Xu, LLY:1609.xxxxx
The "simpler": $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$

* 41 master integrals, many involve 4 mass scales
* Two methods:

Agree well!

* Expansion in $1 / m_{t}$

* Numeric evaluation using sector decomposition
* Preliminary result: ~1 \% for CEPC; important effect!

The more difficult (but also important): $\mathrm{O}\left(\alpha^{2}\right)$

Summary

* A new era for particle physics after Higgs discovery
* Many things waiting to be explored: gauge couplings, Yukawa couplings, Higgs self-couplings, Higgs width, flavor, CP, ...
* New precision calculations for $\mathrm{gg} \rightarrow \mathrm{H}, \mathrm{Hj}, \mathrm{ttH}, \mathrm{HH}, \mathrm{WHH}$
* Precision $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-\rightarrow} \mathrm{ZH}\right)$: fundamental theoretical input for Higgs factories

Thank you!

