Light meson decays at BESIII

Liu, Huanhuan (Institute of High Energy Physics) 2016.08.22

Outline

- Introduction
- η'→γe+e-
- η'→γπ+π-
- η' →3π
- Summary

Introduction

Introduction

• η/η' : a rich physics field

- Unique place to test fundamental symmetries in QCD at low energy region
- Probe physics beyond the Standard Model (SM)
- VMD, ChPT(Box Anomaly, U(3) ChPT), Dispersion, ...

$$\begin{array}{l} \eta/\eta' \rightarrow 2\gamma \\ \eta' \rightarrow \gamma e + e - & Tr \\ \eta' \rightarrow \gamma \pi + \pi - & \\ \eta' \rightarrow \pi + \pi - \pi^{0}, 3\pi^{0} \\ \eta/\eta' \rightarrow \mu + \mu - \pi^{0}, e + e - \pi^{0} \\ \eta/\eta' \rightarrow \mu e \end{array}$$

chiral anomaly ransition Form Factors (TFF) box anomaly quark masses ° C violation LF violation

CLAS

BESIII

Introduction

- 1.3×10^9 J/ ψ events (2009+2012)
- = η / η' from J/ψ radiative decays
 - \rightarrow 1.4×10⁶ η
 - \rightarrow 6.8×10⁶ η '
- η / η' from J/ ψ hadronic decays (e.g., J/ $\psi \rightarrow \phi \eta$)
 - \rightarrow 5×10⁵ η
 - \rightarrow 3×10⁵ η '

η'**→**γe⁺e⁻

η'**→**γe⁺e⁻

 $\mathscr{B}(\eta' \to \gamma e^+ e^-) = (4.69 \pm 0.20(stat.) \pm 0.23(sys.)) \times 10^{-4}$

4.2 \times 10⁻⁴ effect meson theory, PRC61,035206

η'**→**γe+e-

$$\begin{split} \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \Big|_{q^2 = 0} = \Lambda^{-2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \mathbf{h} \\ \mathbf{h} = \frac{dF}{dq^2} \mathbf{$$

• In agreement with the results of $\eta' \rightarrow \gamma \mu + \mu -$ from CELLO $b_{\eta'} = (1.7 \pm 0.4) GeV^{-2}$

Theoretical predictions:

$$\begin{array}{ll} b_{\eta'} = 1.45 GeV^{-2} & \text{VMD} \\ b_{\eta'} = 1.60 GeV^{-2} & \text{ChPT} \\ b_{\eta'} = 1.53^{+0.15}_{-0.08} GeV^{-2} & \text{Dispersion} \end{array}$$

9

 $\eta' \rightarrow \gamma \pi^+ \pi^-$

η'→γπ+π-

η' **→**3π

$$V(p_V) \to \pi^+(p_+)\pi^-(p_-)\pi^0(p_0), \qquad V = \eta, \eta', \omega, \phi....$$

 $n' \rightarrow 3\pi$

 $\frac{BR(\eta' \to \pi^+ \pi^- \pi^0)}{BR(\eta' \to \pi^+ \pi^- \eta)} \text{ and } \frac{BR(\eta' \to \pi^0 \pi^0 \pi^0)}{BR(\eta' \to \pi^0 \pi^0 \eta)}$

 $r = \frac{\Gamma_{\eta' \to \pi^+ \pi^- \pi^0}}{\Gamma_{\eta' \to \pi^+ \pi^- \eta}} \approx (16.8) \frac{3}{16} (\frac{m_d - m_u}{m_s})^2$ d-u quark masses

U(3) ChPT, Borasoy, Nißler 2005: BR($\eta \rightarrow \pi^+\pi^-\pi^0$) ≈ 1.8% large $\rho^+\pi^-$ + cc η' **→**3π

η' **→**3π

η' **→**3π

Summary

- BESIII as η' factory
- Published as η/η' analysis:
 - $\eta' \rightarrow \pi^+ \pi^- \pi^0$ DP
 - $\eta/\eta' \rightarrow \pi^+\pi^-$ CPV, UL
 - $\eta' \rightarrow \pi^+ \pi^- l^+ l^- BR$
 - invisible decays UL
 - weak decays UL
 - $\eta' \rightarrow 4\pi$ BR
 - $\eta' \rightarrow \gamma e^+e^-$ BR, TTF
 - $\eta \rightarrow \pi^+ \pi^- \pi^0$, $\eta / \eta' \rightarrow \pi^0 \pi^0 \pi^0$
 - η'→K+π- + cc UL

PRD83, 012003 ('11) PRD84, 032006 ('11) PRD87, 092011 ('13) PRD87, 012009 ('13) PRD87, 032006 ('13) PRL112, 251801 ('14) PRD92, 012001 ('15) PRD92, 012014 ('15)

PRD93, 072008 ('16)

Red results based on '09 J/ ψ data. ¹⁷ more light mesons: ω , ϕ ,

DP