

Light meson spectroscopy at BESIII

Zhenxing CHEN (Peking University & Institute of High Energy Physics, CAS) On behalf of BESIII Collaboration

中國科學院為能物記酒完所 Institute of High Energy Physics Chinese Academy of Sciences

BEPCII and BESIII

BESIII

Beam energy: $1.0 \sim 2.3 \text{ GeV}$ Luminosity: $1.0 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ (reached in April 5th, 2016)

BESIII Detector

Super-Conducting Magnet 1.0 T (2009) 0.9 T (2012)

Main Drift Chamber (MDC) $\sigma_P/P = 0.5\%$ @ 1 GeV $\sigma_{dE/dx} = 6\%$

> Electromagnetic Calorimeter (EMC) $\sigma_E/\sqrt{E} = 2.5\%$ @ 1 GeV $\sigma_{Z,\phi} = 0.5 - 0.7 \text{ cm}/\sqrt{E}$

Time of Flight (TOF) σ_T: 90 ps (barrel) 110 ps (endcap)

Data set

World largest J/ ψ , ψ (3686), ψ (3770), ... produced directly from e⁺e⁻ collision : an ideal factory to study light meson spectroscopy

Highlights of recent progress at BESIII

□ X(pp̄) and X(1835)

- ✓ A new decay mode of X(1835) ($\rightarrow K_S K_S \eta$) observed and its J^{PC} determined
- Anomalous η'π⁺π⁻ mass line shape near pp̄ mass threshold is observed

Glueball Searches

- ✓ Model independent partial wave analysis of J/ ψ →γ π^0 π^0
- ✓ Partial wave analysis of $J/\psi \rightarrow \gamma \phi \phi$

Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$

- Based on 1.3×10^9 J/ ψ events collected in 2009 and 2012
- Clear structure on mass spectrum of $K_{S}K_{S}\eta$ around 1.85 GeV/c²
- Strongly correlated to f₀(980)
- PWA for $M(K_SK_S) < 1.1 \text{ GeV/c}^2$

PRL 115, 091803 (2015)

PWA of $J/\psi \rightarrow \gamma K_S K_S \eta$

Nonresonant f₀(1500)η

• X(1560)

- ✓ J^{PC}=0⁻⁺
- ✓ X(1560)→K_SK_Sη (> 8.9σ)
- ✓ $M = 1565 \pm 8^{+0}_{-63} \text{ MeV/c}^2$
- $\checkmark \Gamma = 45^{+14+21}_{-13-28} \,\text{MeV}/\text{c}^2$
- Consistent with η(1405)/η(1475) within 2.0σ

• X(1835)

- ✓ J^{PC} determined to be 0⁻⁺
- ✓ X(1835)→K_SK_Sη (> 12.9 σ), dominated via f₀(980)
- \checkmark M = 1844 ± 9⁺¹⁶₋₂₅ MeV/c²
- ✓ $\Gamma = 192^{+20+62}_{-17-43} \text{ MeV/c}^2$
- ✓ Consistent with the values obtained from $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- $\checkmark \ \mathfrak{B}(J/\psi \to \gamma X(1835)) \ \cdot \mathfrak{B}(X(1835) \to K_S K_S \eta) = \ (3.31^{+0.33}_{-0.30}{}^{+1.96}_{-1.29}) \times 10^{-5}$

X(1835) and $X(p\overline{p})$

- Discovered by BESII in $J/\psi \rightarrow \gamma p\bar{p}$ PRL 91, 022001 (2003)
- Confirmed by BESIII in $J/\psi \rightarrow \gamma p \bar{p}$ with data collected in 2009
- PWA for M($p\bar{p}$) < 2.2 GeV/ c^2
 - ✓ J^{PC}=0⁻⁺
 - ✓ M = $1832 \pm 19^{+19}_{-5}^{+18}_{-17}$ MeV/c²

✓
$$\Gamma = 13 \pm 19 \text{ MeV/c}^2$$

(< 76 MeV/c²@ 90% C. L.

- Discovered by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ PRL 95, 062001 (2005)
- Confirmed by BESIII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ with data collected in 2009
- Confirmed by BESIII in $J/\psi \rightarrow \gamma K_S K_S \eta$ with data collected in 2009 and 2012
- PWA for $M(K_SK_S) < 1.1 \text{ GeV/c}^2$ ✓ J^{PC}=0⁻⁺
 - ✓ M = $1844 \pm 9^{+16}_{-25}$ MeV/c²

$$\checkmark \Gamma = 192^{+20}_{-17}{}^{+62}_{-43} \text{ MeV/c}$$

2.6

2.8

- Based on $1.09 \times 10^9 \; J/\psi$ events collected by BESIII in 2012
- Two decay modes of η^\prime

 - ✓ η'→ηπ⁺π⁻, η→γγ
- X(2120) and X(2370) confirmed, a structure near 2.6 GeV/c² observed
- A significant distortion of the $\eta'\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ line shape near the $p\overline{p}$ mass threshold

- Simultaneous fits to two η^\prime decay modes
- Simple Breit-Wigner function fails in describing the $\eta'\pi^+\pi^-$ line shape near the $p\bar{p}$ mass threshold
- Two typical circumstances where an abrupt distortion of a resonance's line shape shows up
 - ✓ Threshold structure caused by the opening of an additional pp̄ decay mode
 - Use the Flatté formula for the line shape
 - ✓ Interference between two resonances with one very narrow close to threshold
 - Use coherent sum of two Breit-Wigner amplitudes for the line shape

PRL 117, 042002 (2016)

 $\log \mathcal{L} = 630503.3$

Use the Flatté formula for the line shape

$$T = \frac{\sqrt{\rho_{out}}}{\mathcal{M}^2 - s - i\sum_k g_k^2 \rho_k}$$

•
$$\sum_k g_k^2 \rho_k \simeq g_0^2 (\rho_0 + \frac{g_{p\bar{p}}^2}{g_0^2} \rho_{p\bar{p}})$$

• $g_{p\bar{p}}^2/g_0^2$ is the ratio between the coupling strength to the $p\bar{p}$ channel and the summation of all other channels

The state around 1.85 GeV/c ²				
\mathcal{M} (MeV/ c^2)	$1638.0 {}^{+121.9}_{-121.9} {}^{+127.8}_{-254.3}$			
$g_0^2 ((\text{GeV}/c^2)^2)$	93.7 +35.4 +47.6 -35.4 -43.9			
$g_{p\overline{p}}^2/g_0^2$	$2.31 {}^{+0.37}_{-0.37} {}^{+0.83}_{-0.60}$			
$M_{pole} (MeV/c^2) *$	$1909.5 \begin{array}{c} ^{+15.9}_{-15.9} \begin{array}{c} ^{+9.4}_{-27.5} \end{array}$			
$\Gamma_{\rm pole} \; ({\rm MeV}/c^2) \; *$	$273.5 \begin{array}{c} +21.4 \\ -21.4 \\ -64.0 \end{array}$			
Branching Ratio	$(3.93 {}^{+0.38}_{-0.38} {}^{+0.31}_{-0.84}) \times 10^{-4}$			

 * The pole nearest to the $p\overline{p}$ mass threshold

a $p\overline{p}$ molecule-like state?

PRL 117, 042002 (2016)

Significance of $g_{\mathrm{p}\overline{p}}^2/g_0^2$ being non-zero is larger than 7σ

X(1920) is needed with 5.7σ

Use coherent sum of two Breit-Wigner amplitudes

 $T = \frac{\sqrt{\rho_{out}}}{M_1^2 - s - iM_1\Gamma_1} + \frac{\beta \cdot e^{i\theta} \cdot \sqrt{\rho_{out}}}{M_2^2 - s - iM_2\Gamma_2}$

PRL 117, 042002 (2016)

X(1835)	
M (MeV/ <i>c</i> ²)	$1825.3 \begin{array}{c} ^{+2.4}_{-2.4} \begin{array}{c} ^{+17.3}_{-2.4} \end{array}$
Г (MeV/ <i>c</i> ²)	$245.2 \begin{array}{c} +14.2 \\ -12.6 \\ -9.6 \end{array}$
B.R. (constructive interference)	$(3.01^{+0.17}_{-0.17}{}^{+0.26}_{-0.28}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72^{+0.21}_{-0.21}{}^{+0.18}_{-0.35}) \times 10^{-4}$
X(1870)	
M (MeV/ <i>c</i> ²)	$1870.2 \begin{array}{c} +2.2 \\ -2.3 \end{array} \begin{array}{c} +2.3 \\ -0.7 \end{array}$
Г (MeV/ <i>c</i> ²)	$13.0 \begin{array}{c} +7.1 \\ -5.5 \\ -3.8 \end{array}$
B.R. (constructive interference)	$(2.03 {}^{+0.12}_{-0.12} {}^{+0.43}_{-0.70}) \times 10^{-7}$
B.R. (destructive interference)	$(1.57 + 0.09 + 0.49) \times 10^{-5}$

a $p\overline{p}$ bound state?

 $\log \mathcal{L} = 630540.3$

Significance of X(1870) is larger than 7σ

X(1920) is not significant

• Both models fit the data well with almost equally good quality

- ✓ Cannot distinguish them with current statistics
- ✓ Suggest the existence of a state, either a broad state with strong couplings to $p\bar{p}$, or a narrow state just below the $p\bar{p}$ mass threshold
- \checkmark Support the existence of a $p\overline{p}$ molecule-like state or bound state
- To understand the nature of the state
 - ✓ More J/ψ data
 - ✓ Study line shapes in other decay modes
 - \succ J/ψ→γp \overline{p}
 - \succ J/ψ→γK_SK_Sη
 - ▶ ...

Glueballs

- Predicted by QCD
- Not established in experiment
- LQCD prediction
 - 0⁺⁺ ground state: 1~2 GeV/c²
 - 2⁺⁺ ground state: 2.3~2.4 GeV/c²
 - 0⁻⁺ ground state: 2.3~2.6 GeV/c²

Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- Based on 1.3×10⁹ J/ψ events collected by BESIII in 2009 and 2012
- $\pi^0\pi^0$ system
 - ✓ Very clean
 - ✓ Large statistics
 - Many broad and overlapping resonances (parameterization challenging)

✓ Model independent PWA (MIPWA)

PRD 92, 052003 (2015)

✓ More than 440k reconstructed events
✓ Background level ~ 1.8%

Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

Extracted Intensity

- - Solution 1
 - Solution 2

- A piecewise function that describes the dynamics of the $\pi^0\pi^0$ system is determined as a function of M($\pi^0\pi^0$)
- Significant features of the scalar spectrum includes structures near 1.5, 1.7 and 2.0 GeV/c²
- Multi-solution problem in MIPWA
- MIPWA can not measure resonance parameters

PRD 92, 052003 (2015)

PWA of $J/\psi \rightarrow \gamma \phi \phi$

- Based on 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- PWA procedure:
 - ✓ Covariant tensor formalism
 - Resonances are parameterized by relativistic Breit-Wigner with constant width
 - ✓ Resonances with significance > 5 σ are selected as components in solution

PRD 93, 112011 (2016)

PWA of $J/\psi \rightarrow \gamma \phi \phi$

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	$\mathrm{B.F.}(\times 10^{-4})$	Sig.
$\eta(2225)$	2216^{+4+18}_{-5-11}	$185^{+12}_{-14}{}^{+44}_{-17}$	$(2.40\pm0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	2050^{+30+77}_{-24-26}	$250^{+36+187}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43\pm0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91\pm0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	6.8σ

PRD 93, 112011 (2016)

 Well consistent with the results from Modelindependent PWA

Pesudoscalar: η(2225) confirmed **η(2100) and X(2500)**

Tensor: $f_2(2010)$, $f_2(2300)$, $f_2(2340)$: strong $f_2(2340)$ production.

Summary

- Highlights of latest results in light meson spectroscopy from BESIII
 - Observation of X(1835) in $J/\psi \rightarrow \gamma K_S K_S \eta$
 - ✓ New decay mode of X(1835) and its J^{PC} is determined: 0⁻⁺
 - Conservation of anomalous $\eta' \pi^+ \pi^-$ line shape near $p\overline{p}$ mass threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
 - \checkmark Support the existence of a $p\overline{p}$ bound state or molecule-like state
 - **Model independent partial wave analysis of** $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - ✓ Useful information for 0⁺⁺, 2⁺⁺ components
 - **Partial wave analysis of** $J/\psi \rightarrow \gamma \phi \phi$
 - ✓ Resonance parameters for glueball search
- More results are expected in the future!

Thanks for your attention!