

12th particle physics workshop of China

Study of T(15, 25, 35) decays

Jia Sen Beihang University

	Ύ(1S)	Ύ(2S)
	21.2×10⁵ (1.06fb⁻¹)	9.32×106 (1.31fb ⁻¹)
BABAR, ¹ at States at Right Narvet		98.6×106 (13.6fb ⁻¹)
BELLE	102×106 (5.7fb ⁻¹)	158×10 ⁶ (24.9fb ⁻¹)

Belle experiment has collected the largest data samples of $\Upsilon(15,25)$ in the world $\frac{1}{2}$

Outline

- Charmonium(-like) productions in $\Upsilon(1S)$ and $\Upsilon(2S)$ radiative decays
- Double-charmonium productions in $\Upsilon(15,25)$ exclusive decays
- T (15,25) decays into light hadrons
- Hadronic transitions of $\Upsilon(2S)$ to $(\eta, \pi^0)\Upsilon(1S)$
- ullet Search for an H-Dibaryon in Υ (15,25) Decays
- Υ (15) inclusive decays into J/ ψ or ψ (25)
- •XYZ states in $\Upsilon(1S)$ inclusive decays
- Study of $x_{bJ}(1P)$ Properties in the Radiative $\Upsilon(2S)$ Decays
- T (15,25,35) physics at Belle II
- Conclusion and Summary
- Acknowledgement

Charmonium(-like) productions in $\Upsilon(1S)$ and $\Upsilon(2S)$ radiative decays

We search for x_{cJ} in the $\gamma J/\psi$ mode. None of the x_{cJ} production is significant unfortunately. Moreover, there are no structures at higher masses, where excited x_{cJ} states would be expected^[1].

To study the $\gamma \eta_c$ mode, the ηc candidates are reconstructed from the K⁺ π ⁻+c.c., π ⁺ π ⁻K⁺K⁻, 2(K⁺K⁻),2(π ⁺ π ⁻) and 3(π ⁺ π ⁻) channels^[2]. The accumulation of events within the η_c mass region is small.

In addition, we search for several charmonium-like states. Only a small number of candidates are observed in the $\pi + \pi - J/\psi$ mode, while no X(3872) or X(3915) signal is observed in the $\pi + \pi - \pi \circ J/\psi$ mode. We also search for the Y(4140) and X(4350)(only in Υ (25) data), there is no candidate event in the signal region.

Double-charmonium productions in $\Upsilon(1S, 2S)$ exclusive decays

Search for Υ (15,25) exclusive decays into a **J/** ψ or ψ ' plus one of the η_c , x_{cJ} , η_c (25), X(3940) and X(4160) states.

The evidence is found for $\Upsilon(15) \rightarrow J/\psi \times_{c1}$ for the first time, and the branching fraction is measured to be $(3.90 \pm 1.21(\text{stat.}) \pm 0.23(\text{syst.})) \times 10-6$ with a signal significance of 4.6 σ ^[3]. While No other > 3σ signals are observed. The measurements are found to be consistent with the theoretical calculations^[4,5].

Υ (1S,2S) decays into light hadrons

An energy conservation variable, $X_T = \sum_{\mu} E_h / \sqrt{s}$ is introduced, where E_h is the energy of the final-state hadron h in the e⁺e⁻ center-of-mass frame. Then for signals X_T should be around 1. The K⁺K⁻, $\pi + \pi - \pi^0$, and K+ $\pi -$ invariant mass distributions are shown in below plots for Υ (15,25) to Φ K⁺K⁻,

 $\omega \pi + \pi -$, and K*(892)°K- $\pi +$ final states.

Clear Φ , ω and K*(892)^o are evident^[6].

Then the two-body intermediate vector-tensor(VT) and axial-vector-pseudoscaler(AP) processes are searched. Only in the VT K*(892)^o $\overline{K}^*_2(1430)^o$ mode, is there signal observed in $\Upsilon(15)$ decay and evidence found in $\Upsilon(25)$ decay; Among the AP modes only evidence is found for $\Upsilon(15) \rightarrow K_1(1400)^+K^{-16}$.

Some other light hadron final states, $K_{S}^{0}K^{+}\pi^{-+}c.c., \pi^{+}\pi^{-}\pi^{0}\pi^{0}$, and $\pi^{+}\pi^{-}\pi^{0}$, are also searched in T (15/25) exclusive decays. Distinct signals are first observed in T (15) $\rightarrow K_{S}^{0}K^{+}\pi^{-+}c.c.$ and T (15,25) $\rightarrow \pi^{+}\pi^{-}\pi^{-}\pi^{0}$, and evidence is found for T (15) $\rightarrow \pi^{+}\pi^{-}\pi^{0}$ and T (25) $\rightarrow K_{S}^{0}K^{+}\pi^{-+}c.c.$

The fitted signal yield results in $\Re_{\eta, \pi+\pi-} = (1.99\pm0.14\pm0.11) \times 10^{-3}$ which is about 14% below the value in Ref.[8] and 40% less than that predicted by scaling from the $\psi(2S) \rightarrow \eta J/\psi$ branching fraction^[9]. A new measurement of $\mathscr{G}(\Upsilon(2S) \rightarrow \eta \Upsilon(1S))$ is obtained to be $(3.57 \pm 0.25(\text{stat.}) \pm 0.21(\text{syst.})) \times 10^{-4}$, which is higher by about two standard deviations and more precise than those obtained by BABAR^[10] and CLEO^[11]. No clear evidence for a π^{0} signal is found in either of the $\Upsilon(1S) \rightarrow |+|^{-1}$ mode. Thus an upper limit for the $\Re_{\pi0,\pi+\pi-}$ is determined to be $< 2.3 \times 10^{-4}$ which is a factor of four more stringent than that by CLEO^[11], and results in the upper limit of $\mathscr{G}(\Upsilon(2S) \rightarrow \pi^{0}\Upsilon(1S)) < 4.1 \times 10^{-5}(90\% C.L.)^{[12]}$.

[8] M. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008).

[9] Y.-P. Kuang, QCD multipole expansion and hadronic transitions in heavy quarkonium systems, Front. Phys. China 1 (2006) 19.

[10] J. P. Lees, et al., Study of Υ (3S, 2S) $\rightarrow \eta \Upsilon$ (1S) and Υ (3S, 2S) $\rightarrow \pi^+\pi^-\Upsilon$ (1S) hadronic transitions, Phys. Rev. D 84 (2011) 092003.

[11] Q. He, et al., Observation of $\Upsilon(2S) \rightarrow \eta \Upsilon(1S)$ and search for related transitions, Phys. Rev. Lett. 101 (2008) 192001.

10

H dibaryon^[13]: a doubly strange, six-quark structure (uuddss) with quantum numbers I =0 and $J^{PC}=0^{++}$ and a mass that is ≈ 80 MeV below the $2m_{\Lambda}$ threshold.

Here we report results of a search for H-dibaryon production in the inclusive processes $\Upsilon(15, 25) \rightarrow H X$; $H \rightarrow \Lambda p \pi - and \Lambda \Lambda$. The resulting continuum-subtracted $M(\Lambda p \pi -)(M(\Lambda p \pi +))$ distribution for the combined $\Upsilon(1S)$ and $\Upsilon(2S)$ samples, shown in the below plots, has no evident $H \rightarrow \Lambda p \pi - (H \rightarrow \Lambda p \pi +)$ signal. The curve in the figure is the result of a fit using an ARGUS-like threshold function to model the background; fit residuals are also shown^[14].

Search for an H-Dibaryon in Υ (1S,2S) Decays

11

The continuum-subtracted M($\Lambda\Lambda$) (M($\overline{\Lambda}$ $\overline{\Lambda}$)) distribution for events is shown in the below plots where there is no any other evident signal for $H \rightarrow \Lambda\Lambda$ ($\overline{H} \rightarrow \overline{\Lambda} \overline{\Lambda}$)^[14].

We divide the data samples into segments on the basis of the scaled momentum, x, that is defined as^[15]:

 $x = p_{\psi}^* / (\frac{1}{2\sqrt{s}} \times (s - m_{\psi}^2)), \quad \psi \text{ represents } J / \psi(\psi(2S))$

; 	$\psi + \text{anyth}$	$\Upsilon(1S) \to \psi(2S) + \text{anything}$								
x	$N_{ m fit}$	$\varepsilon(\%)$	$\sigma_{\rm syst}(\%)$	-	$\mathcal{B}(10^{-1})$	-4)	$N_{ m fit}$	$\varepsilon(\%)$	$\sigma_{\rm syst}(\%)$	$\mathcal{B}(10^{-4})$
(0.0, 0.2)	379.3 ± 28.1	6.06	4.3	0.61	± 0.03	5 ± 0.03	30.1 ± 10.5	1.81	21.8	$0.16 \pm 0.06 \pm 0.04$
(0.2, 0.4)	1297.6 ± 48.6	5.78	5.4	2.20	± 0.08	8 ± 0.12	71.3 ± 18.3	1.76	26.5	$0.40 \pm 0.10 \pm 0.1$
(0.4, 0.6)	904.6 ± 41.6	5.51	5.6	1.61	$\pm 0.0'$	7 ± 0.09	71.5 ± 15.4	1.68	18.6	$0.42 \pm 0.09 \pm 0.00$
(0.6, 0.8)	354.0 ± 29.3	5.15	6.8	0.67	± 0.00	6 ± 0.05	39.5 ± 12.0	1.65	16.6	$0.23 \pm 0.07 \pm 0.0$
(0.8, 1.0)	54.2 ± 13.4	<u>3.36</u>	7.6	0.16	± 0.04	4 ± 0.02	2.5 ± 5.7	1.40	78.4	$0.02 \pm 0.04 \pm 0.01$
Sum	2989.6 ± 75.0	5.62	4.7	5.25	± 0.13	3 ± 0.25	214.9 ± 29.3	1.71	8.9	$1.23 \pm 0.17 \pm 0.1$

Our results have smaller central values and much better precision than the PDG averages^[16]: $(6.5\pm0.7)\times10^{-4}$ and $(2.7\pm0.9)\times10^{-4}$.

[16] R. A. Briere, et al., (CLEO Collaboration), Phys. Rev. D 70, 072001 (2004).

Differential branching fractions for Υ (1S) inclusive decays into the J/ ψ and ψ (2S) versus the scaled momentum x.

- Distinct $J/\psi(\psi(2S))$ signals had been observed in $\Upsilon(1S)$ decays by CLEO^[17] and Belle^[18] Collaborations.
- Experimentally, most of XYZ states dominantly decay into the final states containing a charmonium and light hadrons^[19].
- It is naturally to try to search for some XYZ states decaying into $J/\psi(\psi(2S))$ plus one or two $\pi \pm/K^{\pm}$ mesons in $\Upsilon(1S)$ inclusive decays to supply for more information on the XYZ productions/decays.
- In our searches, 14 decay modes are considered: X(3872), Y(4260) in $\pi + \pi J/\psi$; Y(4260), Y(4360),Y(4660) in $\pi + \pi - \psi(2S)$; Y(4260) in K+K-J/ ψ ; Y(4140), X(4350) in $\Phi J/\psi$ with $\Phi \rightarrow K+K^-$, $Z_c(3900)^{\pm}$, $Z_c(4330)^{\pm}$ in $\pi \pm J/\psi$; $Z_c(4050)^{\pm}$, $Z_c(4430)^{\pm}$ in $\pi \pm \psi(2S)$; $Z_{cs}^{\pm [20,21]}$ with mass (3.97±0,08)GeV/c² and width (24.9±12.6) MeV in K±J/ ψ .

[17] R. A. Briere, et al., (CLEO Collaboration), Phys. Rev. D 70, 072001 (2004); [18] S. D. Yang, et al., (Belle Collaboration), Phys. Rev. D 90, 112008 (2014); [19] N. Brambilla, et al., Eur. Phys. J. C 74, 2981 (2014); [20] S. H. Lee, et al., J. Korean Phys. Soc. 55, 424 (2009);
[21] J. M. Dias, et al., Phys. Rev. D 88, 096014 (2013).

No evident signal is found for any of XYZ and 90% C.L. upper limits are set on the product branching fractions^[15].

State	N_{fit}	$N_{ m up}$	$\varepsilon(\%)$	$\sigma_{\rm syst}(\%)$	$\Sigma(\sigma)$	\mathcal{B}_R
$X(3872) \rightarrow \pi^+\pi^- J/\psi$	4.8 ± 15.4	31.4	3.26	18.7	0.3	$< 9.5 \times 10^{-6}$
$Y(4260) \to \pi^+\pi^- J/\psi$	-31.1 ± 88.9	134.6	3.50	35.6		$< 3.8 \times 10^{-5}$
$Y(4260) \to \pi^+ \pi^- \psi(2S)$	6.7 ± 29.4	56.9	0.71	35.0	0.2	$< 7.9 \times 10^{-5}$
$Y(4360) \to \pi^+\pi^-\psi(2S)$	-25.4 ± 30.1	45.6	0.86	50.0	—	$< 5.2 \times 10^{-5}$
$Y(4660) \to \pi^+ \pi^- \psi(2S)$	-55.0 ± 26.2	23.1	1.06	40.7		$< 2.2 \times 10^{-5}$
$Y(4260) \rightarrow K^+ K^- J/\psi$	-13.7 ± 10.9	14.5	1.91	45.8	_	$< 7.5 \times 10^{-6}$
$Y(4140) \rightarrow \phi J/\psi$	-0.1 ± 1.2	3.6	0.69	11.0		$< 5.2 \times 10^{-6}$
$X(4350) \rightarrow \phi J/\psi$	2.3 ± 2.5	7.6	0.92	10.4	1.2	$< 8.1 \times 10^{-6}$
$Z_c(3900)^{\pm} \rightarrow \pi^{\pm} J/\psi$	-26.5 ± 39.1	57.5	4.39	47.3		$< 1.3 \times 10^{-5}$
$Z_c(4200)^{\pm} \to \pi^{\pm} J/\psi$	-238.6 ± 154.2	235.1	3.87	48.4	<u>~</u> _\$	$< 6.0 \times 10^{-5}$
$Z_c(4430)^{\pm} \rightarrow \pi^{\pm} J/\psi$	94.2 ± 71.4	195.8	3.97	34.4	1.2	$< 4.9 \times 10^{-5}$
$Z_c(4050)^{\pm} \rightarrow \pi^{\pm}\psi(2S)$	37.0 ± 47.7	112.7	1.27	46.2	0.4	$< 8.8 \times 10^{-5}$
$Z_c(4430)^{\pm} \rightarrow \pi^{\pm}\psi(2S)$	23.2 ± 42.4	92.0	1.35	47.1	0.1	$< 6.7 \times 10^{-5}$
$Z_{cs}^{\pm} \to K^{\pm} J/\psi$	-22.2 ± 17.4	22.4	3.88	48.7		$< 5.7 \times 10^{-6}$

Study of x_{bj} (1P) Properties in the Radiative Υ (2S) Decays

We report a study of radiative decays of x_{bJ} (1P)(J = 0, 1, 2) mesons into 74 hadronic final states comprising charged and neutral pions, kaons, protons; out of these, 41 modes are observed with at least 5 standard deviation significance. Our measurements not only improve the previous measurements by the CLEO Collaboration but also lead to first observations in many new modes^[22].

$\chi_{b0}(1P)$			$\chi_{b1}(1P)$		$\chi_{b2}(1P)$		$3\pi^+3\pi^-K^+K^-\pi^0$	$1.8 \pm 0.4 \pm 0.4$	5.2	$6 \pm 0.6 \pm 1.1$	14.5	$3.8 \pm 0.5 \pm 0.7$	9.0
Mode	B	σ	B	σ	B	σ	$4\pi^+ 4\pi^- K^+ K^- \pi^0$	< 1.7	1.4	$4 \pm 0.7 \pm 1.0$	7.8	$2.4 \pm 0.6 \pm 0.6$	4.4
$2\pi^{+}2\pi^{-}$	$0.13 \pm 0.05 \pm 0.02$	3. <mark>0</mark>	$0.31 \pm 0.06 \pm 0.04$	6.8	$0.15 \pm 0.06 \pm 0.02$	3.1	$\pi^{+}\pi^{-}2K^{+}2K^{-}\pi^{0}$	$0.28 \pm 0.11 \pm 0.04$	3.2	$0.9 \pm 0.2 \pm 0.2$	7.9	$0.45 \pm 0.15 \pm 0.08$	3.9
$3\pi^+3\pi^-$	$0.67 \pm 0.08 \pm 0.06$	11.0	$1.84 \pm 0.12 \pm 0.16$	23.6	$0.96 \pm 0.10 \pm 0.10$	12.6	$2\pi^+2\pi^-2K^+2K^-\pi^0$	$0.7 \pm 0.3 \pm 0.1$	3.2	$1.1 \pm 0.3 \pm 0.2$	5.0	$0.7 \pm 0.3 \pm 0.1$	3.5
$4\pi^{+}4\pi^{-}$	$0.78 \pm 0.13 \pm 0.11$	8.5	$2.8 \pm 0.2 \pm 0.4$	22.5	$1.8 \pm 0.2 \pm 0.2$	14.6	$\pi^+\pi^-n\overline{n}\pi^0$	< 0.1	0.0	$0.24 \pm 0.07 \pm 0.04$	5.4	$0.14 \pm 0.06 \pm 0.02$	22
$5\pi^{+}5\pi^{-}$	$0.53 \pm 0.14 \pm 0.10$	4.9	$1.5 \pm 0.2 \pm 0.3$	10.8	$1.7 \pm 0.2 \pm 0.3$	10.9	+ - x + x 0	V 0.1	0.0	0.24 ± 0.01 ± 0.04	0.4	$0.14 \pm 0.00 \pm 0.02$	0.0
$\pi^{+}\pi^{-}K^{+}K^{-}$	$0.15 \pm 0.03 \pm 0.03$	8.1	$0.17 \pm 0.03 \pm 0.03$	8.6	$0.15 \pm 0.04 \pm 0.03$	6.3	$\pi^+\pi^-K^+K^-p\overline{p}\pi^0$	< 0.5	2.8	$0.5 \pm 0.1 \pm 0.2$	5.5	$0.32 \pm 0.13 \pm 0.12$	3.3
$2\pi^+ 2\pi^- K^+ K^-$	$0.53\pm0.08\pm0.05$	8.7	$1.20 \pm 0.11 \pm 0.10$	16.3	$0.8 \pm 0.10 \pm 0.08$	11.5	$\pi^{+}\pi^{-}\pi^{\pm}K^{\mp}K^{0}_{s}\pi^{0}$	< 0.5	1.5	$2.2 \pm 0.3 \pm 0.2$	11.9	$1.2 \pm 0.2 \pm 0.2$	6.1
$3\pi^+3\pi^-K^+K^-$	$0.6 \pm 0.13 \pm 0.06$	5.8	$1.7 \pm 0.2 \pm 0.2$	13.7	$1.2 \pm 0.2 \pm 0.1$	9.8	$2\pi^+2\pi^-\pi^\pm K^\mp K^0_S\pi^0$	$1.3 \pm 0.4 \pm 0.2$	3.8	$5.3 \pm 0.6 \pm 0.8$	12.1	$2.6 \pm 0.5 \pm 0.5$	6.1
$4\pi 4\pi K K$	$1.2 \pm 0.2 \pm 0.2$	7.9	$1.6 \pm 0.2 \pm 0.2$	10.5	$1.6 \pm 0.2 \pm 0.2$	9.6	$3\pi^{+}3\pi^{-}\pi^{\pm}K^{\mp}K^{0}\pi^{0}$	$24 \pm 07 \pm 05$	11	$16 \pm 08 \pm 10$	76	$20 \pm 07 \pm 06$	17
$\pi^{+}\pi^{-}2K^{+}2K^{-}$	$0.18 \pm 0.05 \pm 0.02$	5.4	$0.35 \pm 0.06 \pm 0.03$	8.6	$0.32 \pm 0.07 \pm 0.03$	7.4	3π 3π π R $R_{S}\pi$	2.4 ± 0.7 ± 0.0	4.1	4.0 ± 0.0 ± 1.0	1.0	2.9 ± 0.1 ± 0.0	4.1
$2\pi^+2\pi^-2K^+2K^-$	$0.33 \pm 0.12 \pm 0.03$	4.4	$0.60 \pm 0.12 \pm 0.06$	7.8	$0.56 \pm 0.12 \pm 0.06$	7.2	$2\pi^+2\pi^-2\pi^0$	$0.8 \pm 0.2 \pm 0.2$	3.9	$4.5 \pm 0.4 \pm 1$	16.9	$3.4 \pm 0.3 \pm 0.8$	12.5
$3\pi^+3\pi^-2K^+2K^-$	$0.33 \pm 0.12 \pm 0.04$	3.8	$0.42 \pm 0.14 \pm 0.06$	4.5	$0.7 \pm 0.2 \pm 0.1$	6.2	$3\pi^+3\pi^-2\pi^0$	$3.6 \pm 0.6 \pm 0.5$	6.7	$16.8 \pm 0.9 \pm 2.3$	24.0	$9.7 \pm 0.9 \pm 1.5$	13.6
$2\pi^+2\pi^-p\overline{p}$	< 0.2	0.9	$0.51 \pm 0.08 \pm 0.06$	10.2	$0.16 \pm 0.06 \pm 0.03$	3.5	$4\pi^+ 4\pi^- 2\pi^0$	$4.8 \pm 1 \pm 1.0$	5.3	$22.3 \pm 1.5 \pm 4.7$	19.6	$15.5 \pm 1.5 \pm 3.3$	13.3
$3\pi^+3\pi^-p\overline{p}$	$0.23 \pm 0.1 \pm 0.03$	3.1	$0.70 \pm 0.14 \pm 0.08$	7.8	$0.31 \pm 0.11 \pm 0.04$	3.6	$5\pi^{+}5\pi^{-}9\pi^{0}$	< 51	26	$108 \pm 16 \pm 24$	81	$11 \pm 10 \pm 25$	71
$\pi^+\pi^-K^+K^-p\overline{p}$	$0.13 \pm 0.04 \pm 0.02$	4.2	$0.18 \pm 0.05 \pm 0.03$	5.7	$0.15 \pm 0.05 \pm 0.03$	3.7	$-\frac{1}{2}$	0.1	2.0	10.0 ± 1.0 ± 2.4	0.4	11 ± 1.0 ± 2.0	1.1
$2\pi^+ 2\pi^- K^+ K^- p\overline{p}$	$0.31 \pm 0.10 \pm 0.05$	4.5	$0.4 \pm 0.1 \pm 0.1$	6.3	$0.2 \pm 0.08 \pm 0.03$	3.4	$\pi^{+}\pi^{-}K^{+}K^{-}2\pi^{0}$	$0.5 \pm 0.2 \pm 0.1$	3.3	$1.1 \pm 0.2 \pm 0.3$	7.0	$0.9 \pm 0.2 \pm 0.2$	5.4
$\pi^+\pi^-\pi^\pm K^\mp K^0_S$	< 0.1	0.0	$0.7 \pm 0.1 \pm 0.1$	12.9	$0.28 \pm 0.07 \pm 0.05$	5.0	$2\pi^+2\pi^-K^+K^-2\pi^0$	$1.7 \pm 0.5 \pm 0.4$	3.9	$4.9 \pm 0.6 \pm 1.1$	10.0	$3.5 \pm 0.6 \pm 0.8$	6.8
$2\pi^+ 2\pi^- \pi^\pm K^\mp K_S^0$	< 0.4	2.2	$1.9 \pm 0.2 \pm 0.2$	13.9	$1.1 \pm 0.2 \pm 0.1$	8.5	$3\pi^+3\pi^-K^+K^-2\pi^0$	32 + 1 + 08	36	89 + 12 + 22	94	64 + 12 + 16	6.3
$3\pi^+ 3\pi^- \pi^\pm K^\mp K_S^0$	< 0.7	2.1	$1.6 \pm 0.3 \pm 0.1$	8.9	$0.8 \pm 0.2 \pm 0.1$	4.3	$a_{+}a_{-}=a_{-}0$	0.2 1 1 1 0.0	0.0	10 1 0 5 1 0 0	5.1	1.0 1.0 5 1.00	0.0
$2\pi^+ 2\pi^- 2K_S^0$	$0.2 \pm 0.08 \pm 0.04$	4.2	$0.28 \pm 0.08 \pm 0.03$	5.4	$0.29 \pm 0.09 \pm 0.03$	5.2	2π 2π $pp2\pi$	< 1.8	2.7	$1.8 \pm 0.5 \pm 0.3$	5.0	$1.6 \pm 0.5 \pm 0.3$	4.4
$3\pi^+ 3\pi^- 2K_S^0$	< 0.6	2.2	$0.5 \pm 0.2 \pm 0.1$	5.0	$0.4 \pm 0.2 \pm 0.1$	3.8	$\pi^{+}\pi^{-}\pi^{\pm}K^{+}K^{0}_{S}2\pi^{0}$	$2.0 \pm 0.5 \pm 0.3$	5.1	$3.6 \pm 0.5 \pm 0.4$	8.6	$1.7 \pm 0.5 \pm 0.2$	4.2
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 0.2	0.7	$0.77 \pm 0.10 \pm 0.06$	10.7	$0.36\pm0.09\pm0.04$	5.2	$2\pi^+2\pi^-\pi^\pm K^\mp K^0_S 2\pi^0$	$3.0 \pm 1.0 \pm 0.6$	3.5	$9 \pm 1.3 \pm 1.7$	9.1	$5.1 \pm 1.2 \pm 1.0$	5.1
$2\pi^+2\pi^-K^+K^-\pi^0$	$0.8 \pm 0.2 \pm 0.2$	4.5	$4.2 \pm 0.3 \pm 0.7$	18.3	$2.8 \pm 0.3 \pm 0.5$	11.8							

- Quarkonium and exotic physics questions will be addressed with extended run periods at T (nS) (n=1~6) and fine energy scans in intermediate regions^[23].
- Data taken at the $\Upsilon(3S)^{[23]}$
 - 200fb⁻¹, 600M Υ (35) event (~7×BABAR)
 - Golden channels: Υ (35) decays including Υ (1D), Υ (2D), η_{b} (15,25,35), \times_{bJ} (1P,2P,3P), h_{b} (1P,2P,3P); Hadronic ($\pi \pi, \pi^{0}, \eta$) decays; Radiative transitions, etc.
 - Search for invisible decays of the light Higgs A^0 , $\Upsilon(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow invisible$.
 - Model with a Dark sector (dark photons, light fermionic dark matter).
- Invisible decays of ↑(15) can be used to probe new physics(NP) or to measure ↑(15)→v v [23]:
 Low mass dark matter particles however might play a role in the decays of ↑(15), having ↑(15)→invisible if kinematic allowed^[24].
 - •New mediators (Z', A^0 , h^0) or SUSY particles might enhance $\Upsilon(1S) \rightarrow \nu \quad \overline{\nu} \quad (\gamma)^{[25]}$.

•In absence of new physics enhancement, Belle II should be able to observe the standard model(SM) $\Upsilon(1S) \rightarrow \nu \quad \overline{\nu}$.

Conclusion and Summary

- Several studies on $\Upsilon(1S,2S)$ decays have been performed including $\Upsilon(1S,2S)$ decays into Charmonium or light hadrons, $\Upsilon(2S)$ hadronic transitions, searching for an H-Dibaryon and XYZ states in $\Upsilon(1S,2S)$ Decays and $\chi_{bJ}(1P)$ Properties in the Radiative $\Upsilon(2S)$ Decays.
- Our results are consistent with calculations using theoretical models and more precise than that by other experiments. And we provide more precise results in searching for new physics containing H-Dibaryon and XYZ states.
- It is anticipated that in the end of 2017 of data taking as many as 100 million Υ(3S) mesons will be produced on resonance, for searches of radiative Υ transitions to DM. With a total of 200fb⁻¹, 600M Υ(3S) events, we will study in a wide range of areas in quarkonium and exotic physics. In addition, more golden model await us is going to be research.

Acknowledgement

[1] C. P. Shen, et al., Search for charmonium and charmoniumlike states in $\Upsilon(1S)$ radiative decays, Phys. Rev. D 82 (2010) 051504. 2 X. L. Wang, et al., Search for charmonium and charmoniumlike states in $\Upsilon(2S)$ radiative decays, Phys. Rev. D 84 (2011) 071107. [3] S. D. Yang, et al., Evidence of $\Upsilon(1S) \rightarrow J/\psi + X_{c1}$ and search for double-charmonium production in Υ (1S) and Υ (2S) decays, Phys. Rev. D 90 (2014) 112008. [4] Y. Jia, Exclusive double charmonium production from Υ decay, Phys. Rev. D 76 (2007) 074007. [5] J. Xu, et al., Exclusive decay of Υ into $J/\psi + x_{c0,1,2}$, Phys. Rev. D 87 (2013) 094004. [6] C. P. Shen, et al., Observation of exclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ decays into light hadrons, Phys. Rev. D 86 (2012) 031102. [7] C. P. Shen, et al., Measurement of exclusive $\Upsilon(1S)$ and $\Upsilon(2S)$ decays into vector-pseudoscalar final states, Phys. Rev. D 88(2013) 011102. [12] U. Tamponi, et al., Study of the hadronic transitions $\Upsilon(2S) \rightarrow (\eta, \pi^0) \Upsilon(1S)$ at Belle, Phys. Rev. D 87 (2013) 011104. [14] B.H. Kim, et al., Search for an H-dibaryon with mass near $2m\Lambda$ in $\Upsilon(1S)$ and $\Upsilon(2S)$ decays, Phys.Rev.Lett. 110 (2013) 222002. [15] C. P. Shen, et al., Search for XYZ states in Υ (1S) inclusive decays, Phys. Rev. D 93 (2016) 112013. [22] A. Abdesselam, et al., Study of $x_{h_1}(1P)$ Properties in the Radiative $\Upsilon(2S)$ decay, arXiv:1606.01276.

[23] The Physics Prospects for Belle II, The Belle II collaboration and B2TiP theory community. 18

Thanks for your attention !