Predicting the sin ϕ_s transverse singlespin asymmetry of pion production at an electron ion collider

Xiaoyu Wang Southeast University 2016.08

Based on PRD 93.074009, Xiaoyu Wang and Zhun Lu

OUTLINE

1. Introduction

2. Formalism

3. Numerical Calculation

4. Conclusion

INTRODUCTION

Transversity $h_1^q(x)$:

Fundamental observables to encode nucleon structure
Chiral-odd (difficult to probe)

To manifest the effect of $h_1^q(x)$ in a process, another chiral-odd function is needed to couple with transversity to ensure chirality conservation.

Some approaches to extract transversity function:
 (TMD) factorization frame work in SIDIS ——Collins function H[⊥].
 Collinear factorization formalism in SIDIS——dihadron fragmentation function.

In the Drell-Yan process——the antiquark transversity.

INTRODUCTION

An alternative approach to access transversity in SIDIS— —the twist-3 chiral-odd fragmentation function $\tilde{H}(z)$ serve as a "spin analyzer".

Motivation: In collinear picture, only the coupling between the function $\tilde{H}(z)$ and the transversity remains as a contribution to the sin ϕ_S azimuthal modulation in the leptoproduction of a single hadron off a transversely polarized nucleon.

The advantage of this approach is that the transverse momentum of the final state hadron is not necessarily to be measured, in contrast to the Collins effect.

The process under study is the pion electroproduction off a transversely polarized proton target

 $e(\ell) + p^{\uparrow}(P) \to e(\ell') + \pi(P_h) + X(P_X),$

P

The invariants used to express the differential cross section

 P_h

 P_X

$$x = \frac{Q^2}{2P \cdot q}, \qquad y = \frac{P \cdot q}{P \cdot l}, \qquad z = \frac{P \cdot P_h}{P \cdot q},$$
$$\gamma = \frac{2Mx}{Q}, \qquad Q^2 = -q^2, \qquad s = (P+l)^2.$$

The reference frame of the process under study is

 S_{\perp}

 P_{hT}

 ϕ_s

 P_h

hadron plane

 ϕ_h

lepton plane

Up to twist-3 level, the sixfold (x, y, z, ϕ_h , ϕ_S and P_{hT}) differential cross section in SIDIS with a transversely polarized target has the general form

$$\frac{d^{6}\sigma}{dxdydzd\phi_{h}d\phi_{S}dP_{hT}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$
$$\times \sqrt{2\varepsilon(1+\varepsilon)}\{\sin\phi_{S}F_{UT}^{\sin\phi_{S}}(x,z,P_{T})$$
$$+\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}(x,z,P_{T})$$
$$+\text{leading twist terms}\}, \qquad (3)$$

Bacchetta et al., JHEP0702, 093 (2007)

Perform the integration over the P_{hT} , the differential cross section turns to the form

$$\frac{d^4\sigma}{dxdydzd\phi_S} = \frac{2\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \\ \times \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_S F_{UT}^{\sin\phi_S}(x,z)$$

The x-dependent and z-dependent asymmetry are defined as $A_{UT}^{\sin\phi_s}(x) = \frac{\int dy \int dz \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} (1+\frac{\gamma^2}{2x}) \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{\sin\phi_s}(x,z)}{\sqrt{2\epsilon(1+\epsilon)}},$

$$\int dy \int dz \frac{\alpha}{xyQ^2} \frac{y}{2(1-\epsilon)} \left(1 + \frac{\gamma}{2x}\right) F_{UU}(x,z)$$

$$= \frac{\int dx \int dy \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sqrt{2\epsilon(1+\epsilon)} F_{UT}^{\sin\phi_s}(x,z)}{\int dx \int dy \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) F_{UU}(x,z)}.$$

 $F_{IIT}^{\sin\phi_s}(x,z)$ and $F_{UU}(x,z)$ are the collinear counterpart of the original structure function $F_{UT}^{\sin\phi_S}(x,z) = -x \sum e_q^2 \frac{2M_h}{O} h_1^q(x) \frac{H^q(z)}{z},$ $F_{UU}(x,z) = x \sum e_q^2 f_1^q(x) D_1^q(z),$ **Twist-3 fragmentation function** $\tilde{H}^{h/q}(z) = 2z^3 \int_{z}^{\infty} \frac{dz_1}{z_1^2} \frac{1}{\frac{1}{z} - \frac{1}{z_1}} \hat{H}^{h/q,\mathfrak{V}}_{FU}(z, z_1).$ At the energy scale $Q^2 = 1 \text{ GeV}^2$, $\hat{H}_{FU}^{h/q,\Im}(z, z_1)$ has been extracted as $\frac{\hat{H}_{FU}^{\pi^+/(u,\overline{d}),\Im}(z,z_1)}{D_1^{\pi^+/(u,\overline{d})}(z)D_1^{\pi^+/(u,\overline{d})}(z/z_1)} = \frac{N_{\text{fav}}}{2I_{\text{fav}}J_{\text{fav}}} z^{\alpha_{\text{fav}}}(z/z_1)^{\alpha'_{\text{fav}}}$ $\times (1-z)^{\beta_{\text{fav}}} (1-z/z_1)^{\beta'_{\text{fav}}}$

K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak, Phys. Rev. D 89, 111501 (2014)

The π^- fragmentation functions may be fixed through charge conjugation

 $\hat{H}_{FU}^{\pi^{-}/(d,\overline{u}),\Im}(z,z_{1}) = \hat{H}_{FU}^{\pi^{+}/(u,\overline{d}),\Im}(z,z_{1})$ $\hat{H}_{FU}^{\pi^{-}/(u,\overline{d}),\Im}(z,z_{1}) = \hat{H}_{FU}^{\pi^{+}/(d,\overline{u}),\Im}(z,z_{1})$

The π^0 fragmentation functions are given by the average of the fragmentation functions for π^+ and π^- .

At the initial scale $Q^2 = 2.14 \text{ GeV}^2$, we adopt the standard parametrization for the transversity

$$h_1^q(x) = \frac{1}{2} \mathcal{N}_q^T(x) [f_1^q(x) + g_1^q(x)],$$
$$\mathcal{N}_q^T(x) = N_q^T x^\alpha (1 - \beta)^\beta \frac{(\alpha + \beta)^{\alpha + \beta}}{\alpha^\alpha \beta^\beta}.$$

M. Anselmino *et al.* Phys. Rev. D 87, 094019 (2013)

Kinematics at EIC covers a wide range of Q -> QCD evolution of the transversity and fragmentation functions H
 implement LO QCD evolution

Adopt two different choices to evolve \widetilde{H} :

Evolve as the fragmentation function D₁.
 K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak, Phys. Rev. D 89, 111501 (2014)

> Evolve as the transversity $h_1(x)$. Motivation: \tilde{H} is a chiral-odd fragmentation function.

Result of $z\tilde{H}^{\pi^+/d}$ (left panel) $z\tilde{H}^{\pi^+/u}$ (right panel) at the initial scale $Q^2 = 1 \text{ GeV}^2$ (solid lines) and the evolved results at $Q^2 = 100 \text{ GeV}^2$

Dotted lines: evolving as D_1 , dashed lines: evolving as h_1

The kinematical region available at EIC

 $Q^2 > 1 \text{ GeV}^2$, 0.001 < x < 0.4, 0.01 < y < 0.95,

0.2 < z < 0.8, $\sqrt{s} = 45 \text{ GeV}$, W > 5 GeV,

 $W^2 = (P+q)^2 \approx \frac{1-x}{x}Q^2.$

A. Accardi et al., arXiv:1212.1701

Parametrization we adopt:

unpolarized distribution f₁^q(x)
 M. Glück, E. Reya, and A. Vogt, Eur. Phys. J. C 5, 461 (1998)
 helicity distribution g₁^q(x)
 M. Glück, E. Reya, M. Stratmann, and W. Vogelsang, Phys. Rev. D 63, 094005 (2001)
 unpolarized integrated fragmentation function D₁^q(z)
 D. de Florian, R. Sassot, and M. Stratmann, Phys. Rev. D 75, 114010 (2007): LO set

• Transverse SSA sin ϕ_S of π^+ production in SIDIS at EIC for $\sqrt{s} = 45$ GeV. The left panel shows the x-dependent asymmetry, while the right one shows the z-dependent asymmetry.

Similarly, transverse SSA sin ϕ_S of π^0 production.

Similarly, transverse SSA sin ϕ_S of π^- production.

CONCLUSION

The numerical prediction shows that the asymmetries for the charged and neutral pions are all sizable, about several percent.

It is quite promising that the sin ϕ_S asymmetries of meson production in SIDIS could be measured at the kinematics of EIC.

• The inclusion of the evolution effect may be important for the interpretation of future experimental data.

Thanks for listening !

Presenter: Xiaoyu Wang

