1-loop RGE of dim=7 Operators in SMEFT

Xiaodong Ma
School of Physics, Nankai University, Tianjin

Aug 23, 2016

- From SM to SMEFT
- Basis for dim-7 operators
- 1-loop RGE of dim-7 operators
- Structure of anomalous dimension matrix $\gamma_{i j}$
- Proton decay with $\Delta L=-\Delta B=1$
- Summary

References

\odot Higher dimensional operators:
[Buchmuller \& Wyler 1986], [B. Grzadkowski et al:1008.4884],
[L. Lehman:1410.4193].
\odot RGE of dim-5 operator:
[K. S. Babu:9309223], [S. Antusch et al:0108005].
\odot RGE of dim-6 operator:
[A. V. Manohar et al:1301.2588], [J. Elias-Miro et al:1302.5661],
[J. Elias-Miro et al:1308.1879], [A. V. Manohar et al:1310.4838],
[A. V. Manohar et al1312.2014], [A. V. Manohar et al:1405.0486].
\odot RGE of dim-7 operator:
[Y , Liao et al:1607.07309].

Convention

SM field content: $H, Q, L, u, d, e, B_{\mu}, W_{\mu}^{\prime}, G_{\mu}^{A}$
Symmetry: Poincare \otimes Gauge $=T_{1,3} \ltimes S O_{+}^{\uparrow}(1,3) \otimes S U(3)_{c} \otimes S U(2)_{\llcorner } \otimes U(1)_{\curlyvee}$ The SM Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SM}}= & -\frac{1}{4} G_{\mu \nu}^{A} G^{A \mu \nu}-\frac{1}{4} W_{\mu \nu}^{\prime} W^{\prime \mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}+\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right)+\lambda \nu^{2}\left(H^{\dagger} H\right) \\
& -\lambda\left(H^{\dagger} H\right)^{2}+\sum_{\psi=Q, L, u, d, e} \bar{\Psi} i \not D \Psi-\left[\bar{Q} Y_{u} u \tilde{H}+\bar{Q} Y_{d} d H+\bar{L} Y_{e} e H+\text { h.c. }\right]
\end{aligned}
$$

A and I : the adjoint indices of the $S U(3) c$ and $S U(2)\llcorner$ group;
Y_{u}, Y_{d}, Y_{e} : the Yukawa couplings in flavor space;

$$
\tilde{H}_{i}=\epsilon_{i j} H_{j}^{*}, \quad D_{\mu}=\partial_{\mu}-i g_{3} T^{A} G_{\mu}^{A}-i g_{2} T^{\prime} W_{\mu}^{\prime}-i g_{1} Y B_{\mu},
$$

T^{A}, T^{\prime}, Y : the generator matrices appropriate for the fields to be acted on.

From SM to SMEFT

- SMEFT is the one which extends the SM by including higher dimensional operators with SM field contents and admits that the NP scale Λ is on top of electroweak scale.

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda^{D-4}} \sum_{D \geq 5} C_{i}^{D} \mathcal{O}_{i}^{D}
$$

Wilson coefficients C_{i}^{D} encode the contribution from unknown NP.

- SMEFT is powerful because it is model-independent.
- For a given specific model, the operator coefficients can easily be matched by integrating out the heavy degrees of freedom.

From SM to SMEFT

- The complete basis of higher dimensional operators have been determined up to dim-7.
- Dim-5: $1 \rightarrow$ neutrino mass operator \rightarrow unique in dim- D (odd):

$$
\mathcal{O}_{\mathrm{n} . \mathrm{m} .}^{D}=\left[\left(L^{\top} \epsilon H\right) C\left(L^{\top} \epsilon H\right)^{\top}\right]\left(H^{\dagger} H\right)^{\frac{D-5}{2}}+\text { h.c. }
$$

- Dim-6: $59+4$ (皮: $\Delta B-\Delta L=0)$
- Higgs physics dominated by dim-6 operators: Higgs production at LHC $g g \rightarrow h$ and decay $h \rightarrow \gamma \gamma, h \rightarrow \gamma Z, \ldots$
- Proton decay with $\Delta B-\Delta L=0$.
- Dim-7: $12+6$ (办: $\Delta B-\Delta L=2$)
- Exotic proton decay with $\Delta B-\Delta L=2$, etc.

Basis for dim-7 operators

$\psi^{2} H^{4}+$ h.c.		$\psi^{2} H^{3} D+$ h.c.	
$\mathcal{O}_{\text {LH }}$	$\epsilon_{i j} \epsilon_{m n}\left(L^{i} C L^{m}\right) H^{j} H^{n}\left(H^{\dagger} H\right)$	$\mathcal{O}_{\text {LeHD }}$	$\epsilon_{i j} \epsilon_{m n}\left(L^{i} C \gamma_{\mu} e\right) H^{j} H^{m} i D^{\mu} H^{n}$
$\psi^{2} H^{2} D^{2}+$ h.c.		$\psi^{2} H^{2} X+$ h.c.	
$\mathcal{O}_{\text {LHD1 }}$	$\epsilon_{i j} \epsilon_{m n}\left(L^{i} C D^{\mu} L^{j}\right) H^{m}\left(D_{\mu} H^{n}\right)$	$\mathcal{O}_{\text {LHB }}$	$\epsilon_{i j} \epsilon_{m n}\left(L^{i} C \sigma_{\mu \nu} L^{m}\right) H^{j} H^{n} B^{\mu \nu}$
$\mathcal{O}_{\text {LHD } 2}$	$\epsilon_{i m} \epsilon_{j n}\left(L^{i} C D^{\mu} L^{j}\right) H^{m}\left(D_{\mu} H^{n}\right)$	$\mathcal{O}_{\text {LHW }}$	$\epsilon_{i j}\left(\epsilon \tau^{\prime}\right)_{m n}\left(L^{i} C \sigma_{\mu \nu} L^{m}\right) H^{j} H^{n} W^{\prime \mu \nu}$
		$\psi^{4} H+$ h.c.	
		$\mathcal{O}_{\bar{e} \text { ellLh }}$	$\epsilon_{i j} \epsilon_{m n}\left(\bar{e} L^{i}\right)\left(L^{j} C L^{m}\right) H^{n}$
$\mathcal{O}_{\bar{L} Q d d D}$	$\left(\bar{L} \gamma_{\mu} Q\right)\left(d C i D^{\mu} d\right)$	$\mathcal{O}_{\bar{d} \angle Q L H 1}$	$\epsilon_{i j} \epsilon_{m n}\left(\bar{d} L^{i}\right)\left(Q^{j} C L^{m}\right) H^{n}$
\mathcal{O} ēeddd	$\left(\bar{e} \gamma_{\mu} d\right)\left(d C i D^{\mu} d\right)$	$\mathcal{O}_{\bar{d} L Q L H 2}$	$\epsilon_{i m} \epsilon_{j n}\left(\bar{d} L^{i}\right)\left(Q^{j} C L^{m}\right) H^{n}$
		$\mathcal{O}_{\bar{d} L \text {-ueH }}$	$\epsilon_{i j}\left(\bar{d} L^{i}\right)(u C e) H^{j}$
		$\mathcal{O}_{\bar{Q} u L L H}$	$\epsilon_{i j}(\bar{Q} u)\left(L C L^{i}\right) H^{j}$
		$\mathcal{O}_{\bar{L} d u d \tilde{H}}$	$(\bar{L} d)(u C d) \tilde{H}$
		$\mathcal{O}_{\text {Lddd }}$	$(\bar{L} d)(d C d) H$
		$\mathcal{O}_{\bar{e} Q d d}{ }^{\text {en }}$	$\epsilon_{i j}\left(\bar{e} Q^{i}\right)(d C d) \tilde{H}^{j}$
		$\mathcal{O}_{\text {L̇dQQ }}$	$\epsilon_{i j}(\bar{L} d)\left(Q C Q^{i}\right) \tilde{H}^{j}$
	$\epsilon_{i j}\left(\bar{d} \gamma_{\mu} u\right)\left(L^{i} C \sigma^{\mu \nu} D_{\nu} L^{j}\right)$	$\mathcal{O}_{\bar{L} d Q d D}$	$\left(\bar{L} i D^{\mu} d\right)\left(Q C \gamma_{\mu} d\right)$

$13(B)+7(B)$ given by [L. Lehman:1410.4193].
Dim-7 Majorana neutrino mass operator;
Baryon number violating operators with $\Delta B=-\Delta L=1$;
Redundant operators.

Proof for redundancies: EoMs + Fierz identities

© EoMs from SM Lagrangian \mathcal{L}_{4}

$$
\begin{aligned}
i \not \square L & =Y_{e} e H \\
i \not D d & =Y_{d}^{\dagger} H^{\dagger} Q
\end{aligned}
$$

© Feriz identities for charge conjugated fields

$$
\begin{aligned}
\left(\Psi_{1 L} C \gamma_{\mu} \Psi_{2 R}\right)\left(\overline{\Psi_{3 R}} \gamma^{\mu} \Psi_{4 R}\right) & =2\left(\overline{\Psi_{3 R}} \Psi_{1 L}\right)\left(\Psi_{4 R} C \Psi_{2 R}\right) \\
\left(\overline{\Psi_{1 L}} \gamma_{\mu} \Psi_{2 L}\right)\left(\Psi_{3 R} C \Psi_{4 R}\right) & =\left(\overline{\Psi_{1 L}} \Psi_{3 R}\right)\left(\Psi_{2 L} C \gamma_{\mu} \Psi_{4 R}\right)+\left(\overline{\Psi_{1 L}} \Psi_{4 R}\right)\left(\Psi_{2 L} C \gamma_{\mu} \Psi_{3 R}\right)
\end{aligned}
$$

where the notation $\Psi^{C}=C \bar{\Psi}^{T}$ is used in actual calcution, and the charge conjugated field is defined by $(\Psi C \chi)=\overline{\Psi^{C}} \chi$ with $\left(\Psi^{C}\right)^{C}=\Psi$, where the matrix C satisfies the relations $C^{T}=C^{\dagger}=-C$ and $C^{2}=-1$.
© Linear dependent operators

$$
\begin{aligned}
\mathcal{O}_{\overline{d u L L D}}^{(2) p r s t} & =2\left(Y_{e}\right)_{t u} \mathcal{O}_{\overline{d L L u e H}}^{\text {psru }}-\mathcal{O}_{\bar{d} u L L D}^{p r s t} \\
\mathcal{O}_{\bar{L} d Q d D}^{\text {prst }} & =\mathcal{O}_{\bar{L} Q d d D}^{\text {pstr }}-\left(Y_{d}^{\dagger}\right)_{r u} \mathcal{O}_{\bar{L} d Q Q Q \tilde{H}}^{\text {ptsu }}
\end{aligned}
$$

Number of independent operators with flavor indices added

Class Operator	[Yi Liao:1607.07309]-Direct counting			[H. Murayama:1512.03433]-Hilbert series		
	n_{f}	1	3	n_{f}	1	3
$\psi^{2} H^{4} \quad \mathcal{O}_{L H}$	$\frac{1}{2} n_{f}\left(n_{f}+1\right)$	1	6	$\frac{1}{2} n_{f}\left(n_{f}+1\right)$	1	6
$\psi^{2} H^{3} D \quad \mathcal{O}_{\text {LeHD }}$	n_{f}^{2}	1	9	n_{f}^{2}	1	9
$\begin{array}{ll}\psi^{2} H^{2} D^{2} & \mathcal{O}_{L H D 1} \\ & \mathcal{O}_{L H D 2}\end{array}$	$\frac{1}{2} n_{f}\left(n_{f}+1\right)$ $\frac{1}{2} n_{f}\left(n_{f}+1\right)$	1 1	$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$	$n_{f}\left(n_{f}+1\right)$	2	12
$\psi^{2} H^{2} X \quad \begin{aligned} & \mathcal{O}_{\text {LHB }} \\ & \\ & \\ & \mathcal{O}_{L H W}\end{aligned}$	$\begin{gathered} \frac{1}{2} n_{f}\left(n_{f}-1\right) \\ n_{f}^{2} \end{gathered}$	0 1	$\begin{aligned} & \hline 3 \\ & 9 \end{aligned}$	$\frac{1}{2} n_{f}\left(3 n_{f}-1\right)$	1	12
$\mathcal{O}_{\bar{e} L L L L H}$ $\psi^{4} H$ $\mathcal{O}_{\bar{d} L Q L H 1}$ $\mathcal{O}_{\bar{d} L Q L H 2}$ $\mathcal{O}_{\bar{d} L L e H}$ $\mathcal{O}_{\bar{Q} u L L H}$	$\begin{gathered} \frac{1}{3} n_{f}^{2}\left(2 n_{f}^{2}+1\right) \\ n_{f}^{4} \\ n_{f}^{4} \\ n_{f}^{4} \\ n_{f}^{4} \\ \hline \end{gathered}$	1 1 1 1 1	$\begin{aligned} & \hline 57 \\ & 81 \\ & 81 \\ & 81 \\ & 81 \\ & \hline \end{aligned}$	$\frac{1}{3} n_{f}^{2}\left(14 n_{f}^{2}+1\right)$	5	381
$\psi^{4} D \quad \mathcal{O}_{\bar{d} u L L D}$	$\frac{1}{2} n_{f}^{3}\left(n_{f}+1\right)$	1	54	$\frac{1}{2} n_{f}^{3}\left(n_{f}+1\right)$	1	54
Total: B	$\frac{31}{6} n_{f}^{4}+\frac{1}{2} n_{f}^{3}+\frac{13}{3} n_{f}^{2}+n_{f}$	11	474	$\frac{31}{6} n_{f}^{4}+\frac{1}{2} n_{f}^{3}+\frac{13}{3} n_{f}^{2}+n_{f}$	11	474
B: $\psi^{4} H \quad$$\mathcal{O}_{\bar{L} d u d \tilde{H}}$ $\mathcal{O}_{\bar{L} d d d H}$ $\mathcal{O}_{\bar{L} Q d d Q \tilde{H}}$	$\begin{gathered} n_{f}^{4} \\ \frac{1}{3} n_{f}^{2}\left(n_{f}^{2}-1\right) \\ \frac{1}{2} n_{f}^{3}\left(n_{f}-1\right) \\ n_{f}^{4} \end{gathered}$	1 0 0 1	$\begin{aligned} & 81 \\ & 24 \\ & 27 \\ & 81 \end{aligned}$	$\frac{1}{6} n_{f}^{2}\left(17 n_{f}^{2}-3 n_{f}-2\right)$	2	213
B: $\psi^{4} D \quad \begin{aligned} & \mathcal{O}_{\bar{L} Q d d D} \\ & \mathcal{O}_{\bar{e} d d d D}\end{aligned}$	$\begin{gathered} \frac{1}{2} n_{f}^{3}\left(n_{f}+1\right) \\ \frac{1}{6} n_{f}^{2}\left(n_{f}^{2}+3 n_{f}+2\right) \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 54 \\ & 30 \end{aligned}$	$\frac{1}{6} n_{f}^{2}\left(4 n_{f}^{2}+6 n_{f}+2\right)$	2	84
Total: B	$\frac{7}{2} n_{f}^{4}+\frac{1}{2} n_{f}^{3}$	4	297	$\frac{7}{2} n_{f}^{4}+\frac{1}{2} n_{f}^{3}$	4	297
Total: $B+B$	$\frac{26}{3} n_{f}^{4}+n_{f}^{3}+\frac{13}{3} n_{f}^{2}+n_{f}$	15	771	$\frac{26}{3} n_{f}^{4}+n_{f}^{3}+\frac{13}{3} n_{f}^{2}+n_{f}$	15	771

Table: Comparison of operator counting: direct counting vs Hilbert series.

1-loop RGE of dim-7 operators

- RGE preserves the operator symmetry, e.g. B operators do not mix with B-conserving operators.
- RG running of six dim-7 both L and B operators: all correction calculated.
- RG running of twelve dim-7 L but B-conserving operators: part of them finished.
- Operator mixing is ubiquitous among different classes.
- Interesting cancellation takes place between different diagrams.
- The rich and non-trivial flavor mixing.

1-loop RGE of dim-7 operators

Dimensional regularizaton $+\overline{\mathrm{MS}}$ scheme $+R_{\xi}$-gauge

$$
16 \pi^{2} \beta_{i}=16 \pi^{2} \frac{d}{d \mu} C_{i}=\sum_{j} \gamma_{i j} C_{j}
$$

- Calculate the β-function or the anomalous dimension matrix γ is boiling down to determine the counterterm.
- Extracting counterterm by computing the generated amplitude with an insertion of dim-7 operator at 1-loop order.
- Also needing to include field strength renormalization constants.
- ξ independent as a check for the calculation.
- Promote flavor symmetry as an another check.

1-loop RGE of six dim-7 both L and \notin operators(part)

$$
\begin{aligned}
\dot{C}_{1}^{p r s t}= & +\left(-4 g_{3}^{2}-\frac{9}{4} g_{2}^{2}-\frac{17}{12} g_{1}^{2}+W_{H}\right) C_{1}^{p r s t}-\frac{10}{3} g_{1}^{2} C_{1}^{p t s r}-\frac{3}{2}\left(Y_{e} Y_{e}^{\dagger}\right)_{p v} C_{1}^{v r s t} \\
& +3\left(Y_{d}^{\dagger} Y_{d}\right)_{v r} C_{1}^{p v s t}+3\left(Y_{d}^{\dagger} Y_{d}\right)_{v t} C_{1}^{p r s v}+2\left(Y_{u}^{\dagger} Y_{u}\right)_{v s} C_{1}^{p r v t}-2\left(Y_{d}^{\dagger} Y_{u}\right)_{v s}\left(C_{2}^{p v r t}+v \leftrightarrow r\right) \\
& +4\left(Y_{e}\right)_{p v}\left(Y_{u}\right)_{w s} C_{3}^{v w r t}-2\left(\left(Y_{u}\right)_{v s}\left(Y_{d}\right)_{w t}+s \leftrightarrow t\right) C_{4}^{p r v w}-\frac{1}{6}\left(11 g_{1}^{2}+24 g_{3}^{2}\right)\left(Y_{u}\right)_{v s} C_{5}^{p v r} \\
& +\frac{1}{6}\left(13 g_{1}^{2}+48 g_{3}^{2}\right)\left(Y_{u}\right)_{v s} C_{5}^{p v t r}-\frac{3}{2}\left(Y_{d}\right)_{v t}\left(Y_{d}^{\dagger} Y_{u}\right)_{w s} C_{5}^{p v r w} \\
& -3\left(Y_{u}\right)_{v s}\left(\left(Y_{d}^{\dagger} Y_{d}\right)_{w t} C_{5}^{p v r w}-r \leftrightarrow t\right)+\frac{3}{2}\left(Y_{e}\right)_{p v}\left(Y_{d}^{\dagger} Y_{u}\right)_{w s} C_{6}^{v r t w}, \\
\dot{C}_{2}^{p r s t}= & +\left(-4 g_{3}^{2}-\frac{9}{4} g_{2}^{2}-\frac{13}{12} g_{1}^{2}+W_{H}\right) C_{2}^{p r s t}+\frac{5}{2}\left(Y_{e} Y_{e}^{\dagger}\right)_{p v} C_{2}^{\text {rrst }} \\
& +2\left(\left(Y_{d}^{\dagger} Y_{d}\right)_{v r} C_{2}^{p v s t}+\left(Y_{d}^{\dagger} Y_{d}\right)_{v s} C_{2}^{p r v t}+\left(Y_{d}^{\dagger} Y_{d}\right)_{v t} C_{2}^{p r s v}\right) \\
& -\frac{1}{4}\left[\left(\left(Y_{u}^{\dagger} Y_{d}\right)_{v s} C_{1}^{p r v t}+\left(Y_{u}^{\dagger} Y_{d}\right)_{v r} C_{1}^{p s v t}+\left(Y_{u}^{\dagger} Y_{d}\right)_{v s} C_{1}^{p t v r}\right)-s \leftrightarrow t\right] \\
& +\left\{\left[\left(\frac{1}{3}\left(g_{1}^{2}-6 g_{3}^{2}\right)\left(Y_{d}\right)_{v r} C_{5}^{p v s t}-\frac{1}{4} g_{1}^{2}\left(Y_{d}\right)_{v s} C_{5}^{p v r t}-\frac{3}{4}\left(Y_{d}\right)_{v r}\left(Y_{d}^{\dagger} Y_{d}\right)_{w t} C_{5}^{p v s w}\right)+r \leftrightarrow t\right]-s \leftrightarrow t\right\} \\
& +\frac{1}{2}\left(Y_{e}\right)_{p v}\left\{\left[g_{1}^{2}\left(C_{6}^{v r s t}+r \leftrightarrow s\right)+\frac{3}{4}\left(\left(Y_{d}^{\dagger} Y_{d}\right)_{w t}\left(C_{6}^{v r s w}+r \leftrightarrow s\right)+\left(Y_{d}^{\dagger} Y_{d}\right)_{w r} C_{6}^{v t s w}\right)\right]-s \leftrightarrow t\right\}, \\
= & +\left(-4 g_{3}^{2}-\frac{9}{4} g_{2}^{2}+\frac{11}{12} g_{1}^{2}+W_{H}\right) C_{3}^{p r s t} \\
\dot{C}_{3}^{p r s t} & +\left[\left(\left(Y_{e}^{\dagger} Y_{e}\right)_{p v} C_{3}^{v r s t}+\frac{5}{4}\left(Y_{u} Y_{u}^{\dagger}+Y_{d} Y_{d}^{\dagger}\right)_{v r} C_{3}^{p v s t}+3\left(Y_{d}^{\dagger} Y_{d}\right)_{v s} C_{3}^{p r v t}-\left(Y_{d}^{\dagger}\right)_{w r}\left(Y_{d}\right)_{v s} C_{3}^{p v w t}\right)-s \leftrightarrow t\right] \\
& -\frac{1}{2}\left(Y_{e}^{\dagger}\right)_{p v}\left[\left(\left(Y_{u}^{\dagger}\right)_{w r} C_{1}^{v t w s}+2\left(Y_{d}\right)_{w s} C_{4}^{v t w r}+\left(Y_{d}\right)_{w t} C_{4}^{v s r w}+3 g_{1}^{2} C_{5}^{v r s t}+3\left(Y_{d}^{\dagger} Y_{d}\right)_{w t} C_{5}^{v r s w}\right)-s \leftrightarrow t\right] \\
& +\frac{1}{4}\left(g_{1}^{2}+12 g_{3}^{2}\right)\left(Y_{d}^{\dagger}\right)_{v r}\left[\left(C_{6}^{p v s t}+C_{6}^{p s v t}+C_{6}^{p s t v}\right)-s \leftrightarrow t\right] \\
& -\frac{3}{4}\left\{\left[\left(Y_{d}^{\dagger} Y_{d}\right)_{v s}\left(Y_{d}^{\dagger}\right)_{w r}\left(C_{6}^{p t v w}-r \leftrightarrow v\right)+\left(Y_{d}^{\dagger} Y_{d}\right)_{w s}\left(Y_{d}^{\dagger}\right)_{v r}\left(C_{6}^{p t v w}+2 C_{6}^{p v t w}\right)\right]-s \leftrightarrow t\right\},
\end{aligned}
$$

Renormalize dim- 7 neutrino mass operator

(1)

(3)
(2)

(7)

(8)

(9)

$$
\mathcal{M}_{(7)}=0, \quad \mathcal{M}_{(8)}+\mathcal{M}_{(9)}=\text { finite }
$$

And the β-function is

$$
16 \pi^{2} \mu \frac{d}{d \mu} C_{L H}^{p r}=\left(40 \lambda+4 Y-\frac{3}{2} g_{1}^{2}-\frac{15}{2} g_{2}^{2}\right) C_{L H}^{p r}-\frac{3}{2}\left[\left(Y_{e} Y_{e}^{\dagger}\right)_{v p} C_{L H}^{v r}+p \rightarrow r\right]+\ldots
$$

where ... stands for contributions from all other $11 /$ but B-conserving operators. Comparing it with dim-5 neutrino mass operator[S. Antusch et al:0108005]

$$
\begin{aligned}
16 \pi^{2} \mu \frac{d}{d \mu} C_{5}^{p r} & =\left(4 \lambda+2 Y-3 g_{2}^{2}\right) C_{5}^{p r}-\frac{3}{2}\left[\left(Y_{e} Y_{e}^{\dagger}\right)_{v p} C_{5}^{v r}+p \rightarrow r\right] \\
Y & \equiv \operatorname{Tr}\left[3\left(Y_{u}^{\dagger} Y_{u}\right)+3\left(Y_{d}^{\dagger} Y_{d}\right)+\left(Y_{e}^{\dagger} Y_{e}\right)\right]
\end{aligned}
$$

Operator mixing

Example: From class $\Psi^{4} H$ to $\Psi^{4} H, \Psi^{2} H^{4}$ and $\Psi^{2} H^{2} X$
Consider the following diagrams with an insertion of the operator $\mathcal{O}_{\bar{e} L L L H}$

$$
\begin{aligned}
\sum \text { diagrams } & \propto L^{2} H D^{2} H+\mathcal{O}_{L H X} \\
& \propto L^{2} H^{4}+\Psi^{4} H+L^{2} H^{2} X
\end{aligned}
$$

EoM: $D^{2} H=\lambda v^{2} H-2 \lambda\left(H^{\dagger} H\right) H-\epsilon^{\top} \bar{Q} Y_{u}^{\dagger} u-\bar{d} Y_{d} Q-\bar{e} Y_{e} L$

Structure of γ-matrix

Based on nonrenormalization theorem[C. Cheung:1505.01844], one can understand the structure of anomalous dimension matrix $\gamma_{i j}$. First define the holomorphic and anti-holomorphic weights of an operator \mathcal{O} by

$$
\omega(\mathcal{O})=n(\mathcal{O})-h(\mathcal{O}), \bar{\omega}(\mathcal{O})=n(\mathcal{O})+h(\mathcal{O})
$$

$n(\mathcal{O})$: the minimal number of fields the operator \mathcal{O} generates; $h(\mathcal{O})$: the total helicity of the operator \mathcal{O}. And the SM field weights are as follows:

SM "fields"	D_{μ}	H	Ψ	$X_{\mu \nu}$	$\bar{X}_{\mu \nu}$	$\bar{\Psi}$
weights $(\omega, \bar{\omega})$	$(0,0)$	$(1,1)$	$\left(\frac{1}{2}, \frac{3}{2}\right)$	$(0,2)$	$(2,0)$	$\left(\frac{3}{2}, \frac{1}{2}\right)$

Left-handed and right-handed fermion fields: Ψ and $\bar{\Psi}$;
Dual field strength tensor: $\tilde{X}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \rho \sigma} X^{\rho \sigma}$.

Structure of γ-matrix

The nonrenormalization theorem dictates that an operator \mathcal{O}_{i} can only be renormalized by an operator \mathcal{O}_{j} if $\omega_{i} \geq \omega_{j}$ and $\bar{\omega}_{i} \geq \bar{\omega}_{j}$, and absent of non-holomorphic Yukawa couplings.

	weights	$(3,5)$	$(3,5)$	$(3,7)$	$(4,6)$	$(4,6)$	$(5,7)$
weights	$\gamma_{i j}$	$\Psi^{2} H^{2} D^{2}$	$\psi \Psi^{3} D$	$\Psi^{2} H^{2} X$	$\psi^{2} H^{3} D$	$\Psi \Psi^{3} \mathrm{H}$	$\psi^{2} \mathrm{H}^{4}$
$(3,5)$	$\Psi^{2} H^{2} D^{2}$	\checkmark	\checkmark	0	0	0	0
$(3,5)$	$\Psi \Psi^{3} D$	$\sqrt{ }$	$\sqrt{ }$	0	0	0	0
$(3,7)$	$\psi^{2} H^{2} X$	\checkmark	\times	\checkmark	0	¢y	0
$(4,6)$	$\psi^{2} H^{3} D$	\checkmark	\times	$\emptyset y$	\checkmark	\checkmark	0
$(4,6)$	$\Psi \Psi^{3} \mathrm{H}$	\checkmark	\checkmark	$\emptyset y$	\checkmark	\checkmark	0
$(5,7)$	$\Psi^{2} H^{4}$	$\sqrt{ }$	\times	\checkmark	\checkmark	\checkmark	\checkmark

$\overline{0}$: vanishing due to nonrenormalization theorem
x : vanishing because no corresponding diagrams
ϕy : nonvanishing due to nonholomorphic Yukawa coupling y
$\sqrt{ }$: surviving pieces

Proton decay with $\Delta L=-\Delta B=1$

Consider the dominant operator relating with proton decay after symmetry breaking,

$$
\begin{aligned}
& \tilde{\mathcal{O}}_{\overline{L d u d \tilde{H}}}^{p 111}=v\left(\bar{\nu}_{p} P_{R} d\right)\left(u C P_{R} d\right) \\
& \tilde{\mathcal{O}}_{\bar{L} d Q Q \tilde{H}}^{p 111}=-v\left(\bar{\nu}_{p} P_{R} d\right)\left(u C P_{L} d\right)
\end{aligned}
$$

Figure: $p \rightarrow \pi^{+} \nu$ with $\Delta L=-\Delta B=1$

Their Wilson coefficients decouple when we only keep gauge and top-Yukawa couplings,

$$
\begin{aligned}
\mu \frac{d}{d \mu} C_{\tilde{L d u d \tilde{H}}}^{p 111} & =\frac{1}{4 \pi}\left[-4 \alpha_{3}-\frac{9}{4} \alpha_{2}-\frac{57}{12} \alpha_{1}+3 \alpha_{t}\right] C_{\tilde{L d u d \tilde{H}}}^{p 111} \\
\mu \frac{d}{d \mu} C_{\tilde{L} d Q Q \tilde{H}}^{p 111} & =\frac{1}{4 \pi}\left[-4 \alpha_{3}-\frac{27}{4} \alpha_{2}-\frac{19}{12} \alpha_{1}+3 \alpha_{t}\right] C_{\tilde{L} d Q Q \tilde{H}}^{p 111}
\end{aligned}
$$

where $\alpha_{i} \equiv g_{i}^{2} / 4 \pi$ and $\alpha_{t} \equiv y_{t}^{2} / 4 \pi$.

Proton decay with $\Delta L=-\Delta B=1$

Estimating the coefficients from GUT scale $\left(M 10^{15} \mathrm{GeV}\right)$ to proton mass scale $\left(m_{p} 1 \mathrm{GeV}\right)$, The overall RGE running results are

$$
\begin{aligned}
C_{\bar{L} d u d \tilde{H}}^{p 111}\left(m_{p}\right) & =(2.034)(1.158)(1.262)(0.787) C_{\tilde{L d u d \tilde{H}}}^{p 111}(M) \\
& =2.34 C_{\tilde{L} d u d \tilde{H}}^{p 111}(M), \\
C_{\bar{L} d Q Q \tilde{H}}^{p 111}\left(m_{p}\right) & =(2.034)(1.551)(1.081)(0.787) C_{\tilde{L} d Q Q \tilde{H}}^{p 111}(M) \\
& =2.68 C_{\tilde{L} d Q Q \tilde{H}}^{p 111}(M),
\end{aligned}
$$

$g_{3}, \quad g_{2}, \quad g_{1}, \quad y_{t}$
They receive an enhancement factor of about 2 .

Summary

- Basis of dim-7 operator determined: $12+6($ 价.
- 1-loop RGE of six dim-7 both L and B operators calculated.
- 1-loop RGE of twelve dim-7 L but B-conserving operators calculated in part.
- The structure of anomalous dimensional matrix- γ determined.
- Proton exotic decay with $\Delta B-\Delta L=2$ discussed.

