1-loop RGE of dim=7 Operators in SMEFT

Xiaodong Ma School of Physics, Nankai University, Tianjin

Aug 23, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- From SM to SMEFT
- Basis for dim-7 operators
- ▶ 1-loop RGE of dim-7 operators
- Structure of anomalous dimension matrix γ_{ij}

- Proton decay with $\Delta L = -\Delta B = 1$
- Summary

References

• Higher dimensional operators:

[Buchmuller & Wyler 1986], [B. Grzadkowski et al:1008.4884],

[L. Lehman:1410.4193].

 \odot RGE of dim-5 operator:

[K. S. Babu:9309223], [S. Antusch et al:0108005].

 \odot RGE of dim-6 operator:

[A. V. Manohar et al:1301.2588], [J. Elias-Miro et al:1302.5661],

[J. Elias-Miro et al:1308.1879], [A. V. Manohar et al:1310.4838],

[A. V. Manohar et al1312.2014], [A. V. Manohar et al:1405.0486].

 \odot RGE of dim-7 operator:

[Y, Liao et al:1607.07309].

Convention

SM field content: $H, Q, L, u, d, e, B_{\mu}, W_{\mu}^{I}, G_{\mu}^{A}$ Symmetry: Poincare \otimes Gauge = $T_{1,3} \ltimes SO_{+}^{1}(1,3) \otimes SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Y}$ The SM Lagrangian:

$$\mathcal{L}_{\mathsf{SM}} = -\frac{1}{4} G^{A}_{\mu\nu} G^{A\mu\nu} - \frac{1}{4} W^{I}_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + (D_{\mu}H)^{\dagger} (D^{\mu}H) + \lambda v^{2} (H^{\dagger}H) - \lambda (H^{\dagger}H)^{2} + \sum_{\Psi = Q, L, u, d, e} \bar{\Psi} i D \Psi - \left[\bar{Q} Y_{u} u \tilde{H} + \bar{Q} Y_{d} dH + \bar{L} Y_{e} eH + \text{h.c.} \right]$$

A and I: the adjoint indices of the $SU(3)_C$ and $SU(2)_L$ group; Y_u , Y_d , Y_e : the Yukawa couplings in flavor space;

$$ilde{H}_i = \epsilon_{ij}H_j^*, \quad D_\mu = \partial_\mu - ig_3 T^A G^A_\mu - ig_2 T^I W_\mu^I - ig_1 Y B_\mu,$$

 T^A , T', Y: the generator matrices appropriate for the fields to be acted on.

From SM to SMEFT

 SMEFT is the one which extends the SM by including higher dimensional operators with SM field contents and admits that the NP scale Λ is on top of electroweak scale.

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + rac{1}{\Lambda^{D-4}} \sum_{D \geq 5} C_i^D \mathcal{O}_i^D$$

Wilson coefficients C_i^D encode the contribution from unknown NP.

- SMEFT is powerful because it is model-independent.
- For a given specific model, the operator coefficients can easily be matched by integrating out the heavy degrees of freedom.

From SM to SMEFT

- The complete basis of higher dimensional operators have been determined up to dim-7.
- ▶ Dim-5: 1 \rightarrow neutrino mass operator \rightarrow unique in dim-D(odd):

$$\mathcal{O}_{n.m.}^{D} = \left[(L^{\mathsf{T}} \epsilon H) C (L^{\mathsf{T}} \epsilon H)^{\mathsf{T}} \right] (H^{\dagger} H)^{\frac{D-5}{2}} + \text{h.c.}$$

- Dim-6: $59 + 4(\beta : \Delta B \Delta L = 0)$
 - Higgs physics dominated by dim-6 operators: Higgs production at LHC $gg \rightarrow h$ and decay $h \rightarrow \gamma\gamma$, $h \rightarrow \gamma Z$, ...

- Proton decay with $\Delta B \Delta L = 0$.
- ...
- Dim-7: $12 + 6(\cancel{B} : \triangle B \triangle L = 2)$
 - Exotic proton decay with $\Delta B \Delta L = 2$, etc.

Basis for dim-7 operators

	$\psi^2 H^4 + ext{h.c.}$	$\psi^2 H^3 D$ + h.c.			
\mathcal{O}_{LH}	$\epsilon_{ij}\epsilon_{mn}(L^iCL^m)H^jH^n(H^{\dagger}H)$	\mathcal{O}_{LeHD}	$\epsilon_{ij}\epsilon_{mn}(L^iC\gamma_\mu e)H^jH^miD^\mu H^n$		
	$\psi^2 H^2 D^2 + h.c.$	$\psi^2 H^2 X + h.c.$			
\mathcal{O}_{LHD1}	$\epsilon_{ij}\epsilon_{mn}(L^iCD^{\mu}L^j)H^m(D_{\mu}H^n)$	\mathcal{O}_{LHB}	$\epsilon_{ij}\epsilon_{mn}(L^iC\sigma_{\mu u}L^m)H^jH^nB^{\mu u}$		
\mathcal{O}_{LHD2}	$\epsilon_{im}\epsilon_{jn}(L^iCD^{\mu}L^j)H^m(D_{\mu}H^n)$	\mathcal{O}_{LHW}	$\epsilon_{ij}(\epsilon \tau^{I})_{mn}(L^{i}C\sigma_{\mu u}L^{m})H^{j}H^{n}W^{I\mu u}$		
	$\psi^4 D$ + h.c.	$\psi^4 H + ext{h.c.}$			
$\mathcal{O}_{\bar{d}uLLD}$	$\epsilon_{ij}(\bar{d}\gamma_{\mu}u)(L^{i}CiD^{\mu}L^{j})$	$\mathcal{O}_{\bar{e}LLLH}$	$\epsilon_{ij}\epsilon_{mn}(\bar{e}L^i)(L^jCL^m)H^n$		
$\mathcal{O}_{\bar{L}QddD}$	$(ar{L}\gamma_\mu Q)(dCiD^\mu d)$	$\mathcal{O}_{\bar{d}LQLH1}$	$\epsilon_{ij}\epsilon_{mn}(\bar{d}L^i)(Q^jCL^m)H^n$		
$\mathcal{O}_{\bar{e}dddD}$	$(ar e \gamma_\mu d)(dCiD^\mu d)$	$\mathcal{O}_{\bar{d}LQLH2}$	$\epsilon_{im}\epsilon_{jn}(\bar{d}L^i)(Q^jCL^m)H^n$		
		$\mathcal{O}_{\bar{d}LueH}$	$\epsilon_{ij}(\bar{d}L^i)(uCe)H^j$		
		$\mathcal{O}_{\bar{Q}_{uLLH}}$	$\epsilon_{ij}(\bar{Q}u)(LCL^i)H^j$		
		$\mathcal{O}_{\overline{I} d u d \widetilde{H}}$	$(\overline{L}d)(uCd)\widetilde{H}$		
		$\mathcal{O}_{\bar{L}dddH}$	(Ēd)(dCd)H		
		$\mathcal{O}_{\bar{e}Qdd\tilde{H}}$	$\epsilon_{ij}(ar{e}Q^i)(dCd) ilde{H}^j$		
		$\mathcal{O}_{ar{L}dQQ ilde{H}}$	$\epsilon_{ij}(ar{L}d)(QCQ^i) ilde{H}^j$		
$\mathcal{O}_{\bar{d}\mu I D}^{(2)}$	$\epsilon_{ij}(ar{d}\gamma_{\mu}u)(L^{i}C\sigma^{\mu u}D_{ u}L^{j})$	$\mathcal{O}_{ar{L}dQdD}$	$(\bar{L}iD^{\mu}d)(QC\gamma_{\mu}d)$		

13(B) + 7(B) given by [L. Lehman:1410.4193]. Dim-7 Majorana neutrino mass operator; Baryon number violating operators with $\Delta B = -\Delta L = 1$; Redundant operators.

Proof for redundancies: EoMs + Fierz identities

 \blacklozenge EoMs from SM Lagrangian \mathcal{L}_4

$$egin{array}{rcl} i oldsymbol{D} L &= Y_e e H \ i oldsymbol{D} d &= Y_d^\dagger H^\dagger Q \end{array}$$

♠ Feriz identities for charge conjugated fields

$$\begin{array}{lll} (\Psi_{1L}C\gamma_{\mu}\Psi_{2R})(\overline{\Psi_{3R}}\gamma^{\mu}\Psi_{4R}) & = & 2(\overline{\Psi_{3R}}\Psi_{1L})(\Psi_{4R}C\Psi_{2R}) \\ (\overline{\Psi_{1L}}\gamma_{\mu}\Psi_{2L})(\Psi_{3R}C\Psi_{4R}) & = & (\overline{\Psi_{1L}}\Psi_{3R})(\Psi_{2L}C\gamma_{\mu}\Psi_{4R}) + (\overline{\Psi_{1L}}\Psi_{4R})(\Psi_{2L}C\gamma_{\mu}\Psi_{3R}) \end{array}$$

where the notation $\Psi^{C} = C\bar{\Psi}^{T}$ is used in actual calcution, and the charge conjugated field is defined by $(\Psi C\chi) = \overline{\Psi^{C}}\chi$ with $(\Psi^{C})^{C} = \Psi$, where the matrix C satisfies the relations $C^{T} = C^{\dagger} = -C$ and $C^{2} = -1$. \clubsuit Linear dependent operators

$$\mathcal{O}_{\bar{d}uLD}^{(2)prst} = 2(Y_e)_{tu}\mathcal{O}_{\bar{d}LueH}^{psru} - \mathcal{O}_{\bar{d}uLD}^{prst} \\ \mathcal{O}_{\bar{L}dQdD}^{prst} = \mathcal{O}_{\bar{L}QddD}^{pstr} - (Y_d^{\dagger})_{ru}\mathcal{O}_{\bar{L}dQQ\tilde{H}}^{ptsu}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Number of independent operators with flavor indices added

Class	Operator	[Yi Liao:1607.07309]-Direct counting			[H. Murayama:1512.03433]-Hilbert series		
		n _f	1	3	n _f	1	3
$\psi^2 H^4$	\mathcal{O}_{LH}	$\frac{1}{2}n_f(n_f+1)$	1	6	$\frac{1}{2}n_f(n_f+1)$	1	6
$\psi^2 H^3 D$	\mathcal{O}_{LeHD}	n_f^2	1	9	n_f^2	1	9
$\psi^2 H^2 D^2$	O_{LHD1}	$\frac{1}{2}n_f(n_f+1)$	1	6	$n_c(n_c+1)$	2	12
	O_{LHD2}	$\frac{1}{2}n_f(n_f+1)$	1	6	<i>n_f</i> (<i>n_f</i> + ±)		
$\psi^2 H^2 X$	O_{LHB}	$\frac{1}{2}n_f(n_f - 1)$	0	3	$\frac{1}{2}nc(3nc-1)$	1	12
	\mathcal{O}_{LHW}	n _f ²	1	9	2 " (() " f)		
$\psi^4 H$	$\mathcal{O}_{\bar{e}LLLH}$	$\frac{1}{3}n_f^2(2n_f^2+1)$	1	57		5	381
	$\mathcal{O}_{\bar{d}LQLH1}$	n_f^4	1	81	1 2 2		
	O _{đLQLH2}	n_f^4	1	81	$\frac{1}{3}n_{f}(14n_{f}+1)$		
	O _{dlueH}	n _f ⁴	1	81			
	$\mathcal{O}_{\bar{Q}uLLH}$	n _f ⁴	1	81			
$\psi^4 D$	Odulin	$\frac{1}{2}n_f^3(n_f+1)$	1	54	$\frac{1}{2}n_f^3(n_f+1)$	1	54
Total: B		$\frac{31}{6}n_f^4 + \frac{1}{2}n_f^3 + \frac{13}{3}n_f^2 + n_f$	11	474	$\frac{31}{6}n_f^4 + \frac{1}{2}n_f^3 + \frac{13}{3}n_f^2 + n_f$	11	474
$B : \psi^4 H$	$\mathcal{O}_{\overline{I} dud \widetilde{H}}$	n _f ⁴	1	81		2	213
	$\mathcal{O}_{\bar{I} dddH}$	$\frac{1}{3}n_f^2(n_f^2-1)$	0	24	$\frac{1}{2}n_{c}^{2}(17n_{c}^{2}-3n_{c}-2)$		
	$\mathcal{O}_{\bar{e}Odd\tilde{H}}$	$\frac{1}{2}n_f^3(n_f-1)$	0	27	6.17(
	O _{ĪdQQĤ}	n_f^4	1	81			
$B : \psi^4 D$	OLOddD	$\frac{1}{2}n_f^3(n_f+1)$	1	54	$1 r^2 (4 r^2 + 6 r + 2)$	2	01
	$O_{\bar{e}dddD}$	$\frac{1}{6}n_f^2(n_f^2+3n_f+2)$	1	30	$\overline{6} n_f (4n_f + 6n_f + 2)$		04
Total:₿		$\frac{7}{2}n_f^4 + \frac{1}{2}n_f^3$	4	297	$\frac{7}{2}n_f^4 + \frac{1}{2}n_f^3$	4	297
Total: <i>B</i> + ₿		$\frac{26}{3}n_f^4 + n_f^3 + \frac{13}{3}n_f^2 + n_f$	15	771	$\frac{26}{3}n_f^4 + n_f^3 + \frac{13}{3}n_f^2 + n_f$	15	771

Table: Comparison of operator counting: direct counting vs Hilbert series.

1-loop RGE of dim-7 operators

- ► RGE preserves the operator symmetry, e.g. B operators do not mix with B-conserving operators.
- ► RG running of six dim-7 both \nu\$ and \mathcal{B} operators: all correction calculated.
- ► RG running of twelve dim-7 ↓ but B-conserving operators: part of them finished.

- Operator mixing is ubiquitous among different classes.
- Interesting cancellation takes place between different diagrams.
- The rich and non-trivial flavor mixing.

1-loop RGE of dim-7 operators

Dimensional regularizaton + $\overline{\text{MS}}$ scheme + R_{ξ} -gauge

$$16\pi^2\beta_i = 16\pi^2 \frac{d}{d\mu} C_i = \sum_j \gamma_{ij} C_j$$

- Calculate the β-function or the anomalous dimension matrix γ is boiling down to determine the counterterm.
- Extracting counterterm by computing the generated amplitude with an insertion of dim-7 operator at 1-loop order.
- Also needing to include field strength renormalization constants.
- ξ independent as a check for the calculation.
- Promote flavor symmetry as an another check.

1-loop RGE of six dim-7 both $\not\!\!\!\!/$ and $\not\!\!\!\!/$ operators(part) $\dot{c}_1^{prst} = + \left(-4g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{17}g_1^2 + W_H\right)c_1^{prst} - \frac{10}{2}g_1^2c_1^{ptsr} - \frac{3}{2}(Y_eY_e^{\dagger})_{pv}C_1^{vrst}$

$$\begin{split} \mathsf{C}_{1}^{-} &= + \left(-4g_{3}^{2} - \frac{4g_{2}}{12} - \frac{1}{12}g_{1}^{2} + W_{H} \right) \mathsf{C}_{1}^{-} - \frac{3}{3}g_{1}\mathsf{C}_{1}^{-} - \frac{2}{2}(2d_{e}^{2})_{pv}\mathsf{C}_{1}^{pvrt} \\ &+ 3(Y_{d}^{\dagger}Y_{d})_{vv}\mathsf{C}_{1}^{pvst} + 3(Y_{d}^{\dagger}Y_{d})_{vv}\mathsf{C}_{1}^{prsy} + 2(Y_{u}^{\dagger}Y_{u})_{vs}\mathsf{C}_{1}^{prvt} - 2(Y_{d}^{\dagger}Y_{u})_{vs}(\mathbb{C}_{2}^{pvrt} + v \leftrightarrow r) \\ &+ 4(Y_{e})_{pv}(Y_{u})_{ws}\mathsf{C}_{3}^{vwrt} - 2\left((Y_{u})_{vs}(Y_{d})_{wt} + s \leftrightarrow t\right)\mathsf{C}_{4}^{prvw} - \frac{1}{6}\left(11g_{1}^{2} + 24g_{3}^{2}\right)(Y_{u})_{vs}\mathsf{C}_{5}^{pvrt} \\ &+ \frac{1}{6}\left(13g_{1}^{2} + 48g_{3}^{2}\right)(Y_{u})_{vs}\mathsf{C}_{5}^{pvrv} - \frac{3}{2}(Y_{d})_{vl}(Y_{d}^{\dagger}Y_{u})_{ws}\mathsf{C}_{5}^{prw} \\ &- 3(Y_{u})_{vs}\left((Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{5}^{pvrv} - r \leftrightarrow t\right) + \frac{3}{2}(Y_{e})_{pv}(Y_{d}^{\dagger}Y_{u})_{ws}\mathsf{C}_{6}^{vrvt} \\ &+ 2\left((Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{5}^{pvrv} - r \leftrightarrow t\right) + \frac{3}{2}(Y_{e})_{pv}(Y_{d}^{\dagger}Y_{u})_{ws}\mathsf{C}_{6}^{prvt} \\ &+ 2\left((Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{2}^{pvrvt} + (Y_{d}^{\dagger}Y_{d})_{vs}\mathsf{C}_{2}^{prvt} + (Y_{d}^{\dagger}Y_{d})_{w}\mathsf{C}_{5}^{prsv}\right) \\ &- \frac{1}{4}\left[\left((Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{2}^{pvrvt} + (Y_{d}^{\dagger}Y_{d})_{ws}\mathsf{C}_{5}^{pvrv} - \frac{3}{4}(Y_{d})_{vr}(Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{5}^{pvsw}\right) + r \leftrightarrow t\right] - s \leftrightarrow t\right\} \\ &+ \frac{1}{2}(Y_{e})_{pv}\left\{\left[g_{1}^{2}\left(\mathsf{C}_{0}^{erst} + r \leftrightarrow s\right) + \frac{3}{4}\left((Y_{d}^{\dagger}Y_{d})_{ws}\mathsf{C}_{5}^{prvt} - \frac{3}{4}(Y_{d})_{vr}(Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{5}^{pvsw}\right) + r \leftrightarrow t\right] - s \leftrightarrow t\right\} \\ &+ \frac{1}{2}(Y_{e})_{pv}\left\{\left[g_{1}^{2}\left(\mathsf{C}_{0}^{erst} + r \leftrightarrow s\right) + \frac{3}{4}\left((Y_{d}^{\dagger}Y_{d})_{ws}\mathsf{C}_{5}^{prvt} + r \leftrightarrow s\right) + (Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{5}^{qsvw}\right)\right] - s \leftrightarrow t\right\} \\ &+ \left[\left((Y_{e}^{\dagger}Y_{e})_{pv}\mathsf{C}_{3}^{vrst} + \frac{1}{4}(Y_{u}Y_{u}^{\dagger} + Y_{d}Y_{d}^{\dagger})_{vr}\mathsf{C}_{5}^{prst} + 3(Y_{d}^{\dagger}Y_{d})_{vs}\mathsf{C}_{5}^{prvt} - (Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{5}^{qsvw}\right) - s \leftrightarrow t\right] \\ &- \frac{1}{2}(Y_{e}^{\dagger})_{pv}\left[\left((Y_{u}^{\dagger})_{wr}\mathsf{C}_{1}^{rtw} + 2(Y_{d})_{ws}\mathsf{C}_{4}^{rtw} + (Y_{d})_{wr}\mathsf{C}_{4}^{s}Y_{d})_{ws}\mathsf{C}_{5}^{prvt} + 3g_{1}^{2}\mathsf{C}_{5}^{sst} + 3(Y_{d}^{\dagger}Y_{d})_{wr}\mathsf{C}_{5}^{stw}\right) - s \leftrightarrow t\right] \\ &- \frac{1}{2}(Y_{e}^{\dagger})_{pv}\left[\left((Y_{u}^{\dagger})_{wr}\mathsf{C}_{1}^{rtw} + 2(Y_{d})_{ws}\mathsf{C}_{s$$

イロト イロト イヨト イヨト ヨー のへで

Renormalize dim-7 neutrino mass operator

$$\mathcal{M}_{(7)}=0, \quad \mathcal{M}_{(8)}+\mathcal{M}_{(9)}= ext{finite}$$

And the β -function is

$$16\pi^{2}\mu\frac{d}{d\mu}C_{LH}^{\rho r} = (40\lambda + 4Y - \frac{3}{2}g_{1}^{2} - \frac{15}{2}g_{2}^{2})C_{LH}^{\rho r} - \frac{3}{2}\left[(Y_{e}Y_{e}^{\dagger})_{\nu p}C_{LH}^{\nu r} + p \to r\right] + \dots$$

where ... stands for contributions from all other 11 $\not L$ but *B*-conserving operators. Comparing it with dim-5 neutrino mass operator[S. Antusch et al:0108005]

$$16\pi^{2}\mu \frac{d}{d\mu}C_{5}^{pr} = (4\lambda + 2Y - 3g_{2}^{2})C_{5}^{pr} - \frac{3}{2}\left[(Y_{e}Y_{e}^{\dagger})_{vp}C_{5}^{vr} + p \rightarrow r\right]$$
$$Y \equiv \operatorname{Tr}\left[3(Y_{u}^{\dagger}Y_{u}) + 3(Y_{d}^{\dagger}Y_{d}) + (Y_{e}^{\dagger}Y_{e})\right]$$

Operator mixing

Example: From class $\Psi^4 H$ to $\Psi^4 H$, $\Psi^2 H^4$ and $\Psi^2 H^2 X$ Consider the following diagrams with an insertion of the operator $\mathcal{O}_{\bar{e}LLLH}$

$$\sum \text{diagrams} \propto L^2 H D^2 H + \mathcal{O}_{LHX}$$
$$\propto L^2 H^4 + \Psi^4 H + L^2 H^2 X$$

EoM: $D^2 H = \lambda v^2 H - 2\lambda (H^{\dagger} H) H - \epsilon^{\mathsf{T}} \bar{Q} Y_u^{\dagger} u - \bar{d} Y_d Q - \bar{e} Y_e L$

Structure of γ -matrix

Based on nonrenormalization theorem[C. Cheung:1505.01844], one can understand the structure of anomalous dimension matrix γ_{ij} . First define the holomorphic and anti-holomorphic weights of an operator \mathcal{O} by

$$\omega(\mathcal{O}) = n(\mathcal{O}) - h(\mathcal{O}), \ \bar{\omega}(\mathcal{O}) = n(\mathcal{O}) + h(\mathcal{O})$$

 $n(\mathcal{O})$: the minimal number of fields the operator \mathcal{O} generates; $h(\mathcal{O})$: the total helicity of the operator \mathcal{O} . And the SM field weights are as follows:

Structure of γ -matrix

The nonrenormalization theorem dictates that an operator \mathcal{O}_i can only be renormalized by an operator \mathcal{O}_j if $\omega_i \geq \omega_j$ and $\bar{\omega}_i \geq \bar{\omega}_j$, and absent of non-holomorphic Yukawa couplings.

	weights	(3,5)	(3,5)	(3,7)	(4,6)	(4,6)	(5,7)
weights	γ_{ij}	$\Psi^2 H^2 D^2$	$\bar{\Psi}\Psi^3D$	$\Psi^2 H^2 X$	$\Psi^2 H^3 D$	$\overline{\Psi}\Psi^{3}H$	$\Psi^2 H^4$
(3,5)	$\Psi^2 H^2 D^2$	\checkmark	\checkmark	0	0	0	0
(3,5)	$\bar{\Psi}\Psi^3D$	\checkmark	\checkmark	0	0	0	0
(3,7)	$\Psi^2 H^2 X$	\checkmark	×	\checkmark	0	Øу	0
(4,6)	$\Psi^2 H^3 D$	\checkmark	×	Øу	\checkmark	\checkmark	0
(4,6)	$\overline{\Psi}\Psi^{3}H$	\checkmark	\checkmark	Øу	\checkmark	\checkmark	0
(5,7)	$\Psi^2 H^4$	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark

0: vanishing due to nonrenormalization theorem

 \times : vanishing because no corresponding diagrams

 $\sqrt{}$: surviving pieces

Proton decay with $\Delta L = -\Delta B = 1$

Consider the dominant operator relating with proton decay after symmetry breaking,

$$\tilde{\mathcal{O}}_{\bar{L}dud\tilde{H}}^{p111} = v(\bar{\nu}_{p}P_{R}d)(uCP_{R}d)$$
$$\tilde{\mathcal{O}}_{\bar{L}dQQ\tilde{H}}^{p111} = -v(\bar{\nu}_{p}P_{R}d)(uCP_{L}d)$$

Figure: $p \rightarrow \pi^+ \nu$ with $\Delta L = -\Delta B = 1$

Their Wilson coefficients decouple when we only keep gauge and top-Yukawa couplings,

$$\begin{split} \mu \frac{d}{d\mu} C_{\bar{L}dud\tilde{H}}^{p111} = & \frac{1}{4\pi} [-4\alpha_3 - \frac{9}{4}\alpha_2 - \frac{57}{12}\alpha_1 + 3\alpha_t] C_{\bar{L}dud\tilde{H}}^{p111} \\ \mu \frac{d}{d\mu} C_{\bar{L}dQQ\tilde{H}}^{p111} = & \frac{1}{4\pi} [-4\alpha_3 - \frac{27}{4}\alpha_2 - \frac{19}{12}\alpha_1 + 3\alpha_t] C_{\bar{L}dQQ\tilde{H}}^{p111} \\ \end{split}$$
where $\alpha_i \equiv g_i^2 / 4\pi$ and $\alpha_t \equiv y_t^2 / 4\pi$.

Proton decay with $\Delta L = -\Delta B = 1$

Estimating the coefficients from GUT scale($M \ 10^{15}$ GeV) to proton mass scale($m_p \ 1$ GeV), The overall RGE running results are

$$C_{\bar{L}dud\tilde{H}}^{p111}(m_p) = (2.034)(1.158)(1.262)(0.787)C_{\bar{L}dud\tilde{H}}^{p111}(M)$$

= 2.34 $C_{\bar{L}dud\tilde{H}}^{p111}(M)$,
$$C_{\bar{L}dQQ\tilde{H}}^{p111}(m_p) = (2.034)(1.551)(1.081)(0.787)C_{\bar{L}dQQ\tilde{H}}^{p111}(M)$$

= 2.68 $C_{\bar{L}dQQ\tilde{H}}^{p111}(M)$,
 g_3, g_2, g_1, y_t

They receive an enhancement factor of about 2.

Summary

- Basis of dim-7 operator determined: $12 + 6(\beta)$.
- ▶ 1-loop RGE of six dim-7 both \nu\$ and \u00c8 operators calculated.
- ▶ 1-loop RGE of twelve dim-7 ∠ but B-conserving operators calculated in part.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The structure of anomalous dimensional matrixdetermined.
- Proton exotic decay with $\Delta B \Delta L = 2$ discussed.