

Searches for heavy neutrinos and high-mass ditau resonances with CMS

Wang Feng

On behalf of IHEP CMS group

Outline

- A new model with heavy composite Majorana neutrino and its search
- Search for heavy neutrinos, from the left-right model, with taus
- Search for high-mass ditau resonances

(IHEP Beijing) Pag 2 / 16

People involved in the measurements

Hunting for heavy composite Majorana neutrinos at the LHC

R. LEONARDI, ^{1,2} L. ALUNNI, ^{1,2} F. ROMEO, ³ L. FANÒ, ^{1,2} and O. PANELLA²
^{1,1} Dipartimento di Fisica, Università degli Studi di Peruja, Via A. Pascoli, 166133, Peruja, Italy ² Islituto Nazionale di Fisica Nucleure, Sezione di Peruja, Via A. Pascoli, 166133 Peruja, Italy ³ Institute Odi High Encryy Physics, 19B Yuquan Lu, Shijingshan District, Beijing, 100439, China Datel December 22, 2015

Search for Heavy Composite Majorana Neutrinos produced in association with a lepton and decaying into a same-flavour lepton plus two quarks at $\sqrt{s} = 13$ TeV with the CMS detector

Luisa Alunni Solestizi¹, Livio Fano¹, Roberto Leonardi¹, Orlando Panella¹, Francesco Romeo², and Huaqiao Zhang²

¹ Universita' degli studi di Perugia and INFN ² IHEP of Beijing

Search for Heavy Neutrinos in Tau Final States at $\sqrt{s}=13$ TeV

C. Avila5, A. Florez5, A. Gurrola1, W. Johns1, T. Kamon2, Y. Oh4, F. Romeo3, and P. Sheldon1

¹ Vanderbilt University, USA ² Texas A&M University, USA ³ Institute of High Energy Physics, Beijing, China ⁴ Kyungpook National University, South Korea ⁵ Universidad de los Andes, Colombia Search for High Mass Resonances and New Physics with a DiTau Pair at $\sqrt{s} = 13$ TeV

C. Avila⁷, J. Cumalat⁴, M. Dalchenko³, A. Florez⁷, F. Gonzalez⁷, A. Gurrola², U. Heintz¹, W. Johns², A. Johnson⁴, A. Kalsi⁰, T. Kamon⁵, E. Laird¹, Z. Mao¹, K. Mazumdar², Y. Oh⁶, F. Romeo⁵, A. Saha³, I. Sanabria⁷, P. Sheldon², J. Sinah in and H. Zhane⁵

Brown University, USA
 Vanderbill University, USA
 Texas A&M University USA
 Texas A&M University USA
 Texas A&M University USA
 Institute of High Energy Physics, Beijing, China
 Kyungpook, National University, South Korea
 Tuniversidad de los Andes, Colombia
 Vanta Texas Colombia
 Tata Institute, India
 Panab University, India

3 / 16

Introduction

Standard model (SM) of elementary particle physics

Theory that can explain many experimental observations, but with un-resolved issues:

- experimental: neutrino masses, dark-matter/energy, gravity, baryogenesis
- theoretical: why SU_{SM}: SU(3)xSU(2)xU(1), hierarchy problem

Use the large hadron collider (LHC) to test the SM

- LHC results have shown a good agreement between data and expectations
- Few measurements has reported a mild excess during Run I

(IHEP Beijing) Pag 4 / 16

Run I CMS anomalies in the eejj final state with 19.7 fb⁻¹

Heavy neutrino search from the Left-Right model

1st generation Lepto-Quark search

- ullet 2.5 σ effect in the eejj channel
- Independent excesses in the 2 analyses
- We studied a new model to interpret these results
- ullet No excess in the $\mu\mu {
 m jj}$ channels
- No searches in the $\tau\tau$ jj channels
- We performed a measurement in this final state
- Excess also in search for LeptoQuark of 1st Gen in evij

Composite models for quarks and leptons (Ref: arXiv:1510.07988)

- Compositness of leptons and quarks is one possible scenario beyond the Standard Model
- If quarks and leptons are composite we expect
 - Contact interaction: a residual interaction of the internal dynamics which should become manifest at some sufficiently high-energy scale, Λ
 - Excited states of quarks and leptons

Among the composite models we consider the weak isospin model

- It doesn't rely to the internal dynamics
- Fermion compositness trough weak isospin symmetry
- ullet analogy with strong isospin o prediction of hadronic states before the discovery of quarks and gluons

(IHEP Beijing) Pag 6 / 16

Excess in eejj channel in our model

The composite model scenario can take into account the HN eejj Run I excess via the production of a heavy composite (excited) neutrino.

7 / 16

and can qualitatively reproduce the shape of the CMS excess in the M(eejj) distribution

It can reproduce also the absence of the excess in the $\mu\mu jj$ channel and the predominance of opposite sign on same sign di-leptons events (see backup)

Heavy composite Majorana neutrino search with 2 leptons and 2 jets (Ref: CMS-EXO-16-026)

Consider ee+jj, $\mu\mu$ +jj channels

- ullet \geq 1 fat jet: pT>190 GeV, $|\eta|<$ 2.4

Bkg estimation done consistently among channels

 Drell-Yan From simulation after data/MC correction taken from Z-peak

 Multijet From loose leptons weighted by probability of jet to be misidentified as leptons

• $t\bar{t}$ From e μ data scaled to the 2lep same-flavor region

No excesses compared to the SM expectations

Heavy composite Majorna neutrino limits with 2 leptons and 2 jets

Exclusions for a heavy composite Majorana neutrinos for masses up to 4.35 (4.5) TeV in the $eejj~(\mu\mu jj)$ channel

(IHEP Beijing) Pag 9 / 16

Heavy neutrino search, from left-right model, with 2 taus and 2 jets (Ref: CMS-EXO-16-016)

No searches with 3rd generation lepton in Run I looking for heavy neutrinos from the left-right model \rightarrow we performed a new search to investigate this case

Consider $\tau_h \tau_h$ jj channel

- τ_h : pT>70 GeV, $|\eta| < 2.1$
- ullet j: pT>50 GeV, $|\eta| < 2.4$
- $\not\!\!E_T > 50$ GeV, no b-jet
- $M(\tau_h, \tau_h) > 100 \text{ GeV}$
- ullet Drell-Yan ditau part well modelled, for dijet side take data/MC correction from $Z o \mu \mu + {
 m iets}$
- Multijet data events with loose τ_h isolation weighted by tight-to-loose τ_h efficiencies measured with $\not\!\!E_T < 30$
- $t\bar{t}$ From simulation, after validation in high-multiplicity b-iet region

10 / 16

No excess compared to the SM expectations

Heavy neutrino limits, from left-right model, with 2 taus and 2 jets

 W_R masses below 2.35 (1.63) TeV are excluded at a 95% confidence level, assuming the HN_{τ} mass is 0.8 (0.2) times the mass of W_R boson

(IHEP Beijing)

11 / 16

High-mass ditau search Ref: CMS-EXO-16-008

We further performed a search for new physics with two taus, which is an important signature due to the increase in \sqrt{s} at LHC

Consider $\tau_h \tau_h, \mu \tau_h, e \tau_h, e \mu$ channels

- ℓ : pT>20,30,35,60 (τ_h, μ, e, τ_h in $\tau_h \tau_h$) GeV, $|\eta| < 2.1$
- *E*_T > 30 GeV
- Opposite charge, no b-jets, τ pair consistent with ditau topology

Bkg estimation done consistently among channels

- Drell-Yan taken from Monte-Carlo (MC) after correction/validation w.r.t. data
- W+jets using data control region weighted by the efficiencies to derive signal region contribution

12 / 16

• Multijet using data considering like-sign events

Event for $M(\tau_1, \tau_2, \not\!\!E_T) > 300 \text{ GeV}$

Process	$\tau_h \tau_h$	$\tau_{\mu}\tau_{\rm h}$	$ au_e au_{ m h}$	$\tau_e \tau_\mu$
Drell-Yan	5 ± 2	16 ± 4	9 ± 4	4 ± 3
W+jets	0.004 ± 0.004	23 ± 9	7 ± 5	0.2 ± 0.5
Diboson	0.02 ± 0.02	6 ± 3	3 ± 2	23 ± 5
$t\bar{t}$	_	4 ± 2	5 ± 3	65 ± 12
Multijet	18 ± 6	4 ± 3	9 ± 3	0.8 ± 1.0
Total	23 ± 6	51 ± 11	33 ± 8	93 ± 13
Observed	20	42	40	96
Z' _{SSM} (1.0 TeV)	44 ± 3	49 ± 4	18.1 ± 1.3	21.1 ± 1.6
Z_{SSM}^{r} (1.5 TeV)	8.5 ± 0.4	9.0 ± 0.4	2.9 ± 0.1	4.4 ± 0.3
Z_{SSM}^{7} (2.0 TeV)	2.1 ± 0.1	2.3 ± 0.1	0.77 ± 0.04	1.2 ± 0.05

No excesses compared to the SM expectations

High-mass ditau mass distributions

(IHEP Beijing) Pag 13 / 16

High-mass ditau limits

Results w.r.t. Z' Sequential Standard Model

Z' < 2.1 TeV, world best limit

(IHEP Beijing)

14 / 16

Conclusions

- LHC results have not shown any clear sign of new physics so far
- Some Run I results have modest excesses
 - \rightarrow we have focused on them at the beginning of Run II:
 - we have studied a **new model** to interpret them, based on **heavy composite Majorana neutrinos**
 - we have looked for heavy composite Majorana neutrinos
 - we have also looked for heavy neutrinos (left-right model) in the tau channel
- We have further **search**ed for new physics with two **high-mass ditau**, which is an important signature due to the increase in \sqrt{s} at LHC
- Again we have not found relevant discrepancies between data and expectations → much more data are coming in order to set more stringent conclusions on these searches

(IHEP Beijing)

15 / 16

Thanks for the attention!

(IHEP Beijing) Pag 16 / 16

Extended weak isospin model

I_{W}	Multiplet
0	E ⁻
1/2	$\epsilon \equiv \left(egin{array}{c} E^0 \ E^- \end{array} ight)$
1	$\epsilon \equiv \left(egin{array}{c} E^0 \ E^- \ E^{} \end{array} ight)$
3/2	$\epsilon_{M} \equiv \left(\begin{array}{c} E^{+} \\ E^{0} \\ E^{-} \\ E^{} \end{array} \right)$

$$\begin{array}{ccc}
I_{W} & \text{Multiplet} \\
\hline
0 & U, D \\
1/2 & \Psi \equiv \begin{pmatrix} U \\ D \end{pmatrix} \\
1 & \mathbf{U} \equiv \begin{pmatrix} U_{(5/3)}^{+} \\ U \\ D \end{pmatrix}, \mathbf{D} \equiv \begin{pmatrix} U \\ D \\ D_{(4/3)}^{-} \end{pmatrix} \\
3/2 & \mathbf{\Psi}_{M} \equiv \begin{pmatrix} U_{(5/3)}^{+} \\ U \\ D \\ D_{(4/3)}^{-} \end{pmatrix}$$

(IHEP Beijing) Pag 17 / 16

Gauge and Contact interactions

$$\begin{split} \mathcal{L}_G &= \frac{1}{2\Lambda} \, \bar{\phi} \sigma^{\mu\nu} \left(g f \, \overline{\gamma} \cdot \overrightarrow{W}_{\mu\nu} + g' f' \, Y B_{\mu\nu} \right) \phi_L + h.c. \\ \mathcal{L}_C &= \frac{g_*^2}{\Lambda^2 - 2} j^\mu j_\mu \\ j_\mu &= \eta_L \phi_L \gamma_\mu \phi_L + \eta'_L \bar{\phi}_L^* \gamma_\mu \phi_L^* + \eta''_L \bar{\phi}_L^* \gamma_\mu \phi_L + h.c. + (L \to R) \end{split}$$
 where $g_* = 4\pi$, $\eta = 1$ and $f, f' = 1$

(IHEP Beijing) Pag 18 / 16

Production cross section

(IHEP Beijing) Pag 19 /

Excess in eejj channel in our model

The composite model scenario can explain this excess via the production of a heavy composite (excited) neutrino. Two processes are possible

Exchange of virtual heavy Majorana neutrino (left)

HEP equivalent of neutrinoless double β -decay

Resonant production of heavy Majorana neutrino (right)

20 / 16

The resonant production is the dominant process

Excess in eejj channel in our model

- In our model is possible to have the excess in the eejj channel and not in the $\mu\mu jj$ channel assuming excited μ state heavier than excited e state
- It is also possible to take into account the predominance of opposite sign on same sign di-leptons. Two possible explanations:
 - processes giving only opposite sign: $pp \rightarrow e^+L^{--} \rightarrow e^+e^-jj$, $pp \rightarrow e^-L^{++} \rightarrow e^-e^+ij$
 - existence of an additional neutrino with a slightly different mass, the interference between the two states can depress same sign.
 (arXiv:1508.02277 [hep-ph]., arXiv:1509.05387 [hep-ph])

(IHEP Beijing) Pag 21 / 16

Excess in eptij channel

CMS reported an excess in a search of lepto-quarks in the channel $ep_T jj$ for $\sqrt{s} = 8$ TeV (http://arxiv.org/abs/1509.03744)

This can be explained by our model with processes like $pp \rightarrow \ell N \rightarrow \ell \nu Z \rightarrow \ell \nu jj$

The absence of the excess in $\mu \not p_T jj$ channel can be explained assuming that the excited muon state is heavier than excited electron state

(IHEP Beijing) Pag 22 / 16

Excess in di-boson search

Recently ATLAS observed an excess around 2 TeV in a search for high-mass diboson resonances with boson-tagged jets at $\sqrt{s} = 8 \text{ TeV}$ (http://arxiv.org/abs/1506.00962)

We can produce a pair of charged excited fermions that could form a 1S bound state wich could decay in a pair of gauge bosons Example: $pp \rightarrow L^+L^- \rightarrow 1SBoundstate \rightarrow W^+W^-$

Pag 23 / 16

Events at di-jet mass 5 TeV

CMS and ATLAS observed few events at 5 TeV in the di-jet mass at Run II of the LHC (CMS-PAS-EXO-15-001, ATLAS-CONF-2015-042)

If they are confirmed by higer statistics and result in an excess, this could be interpreted as the first hadronic resonance in a composite scenario

(IHEP Beijing) Pag 24 / 16