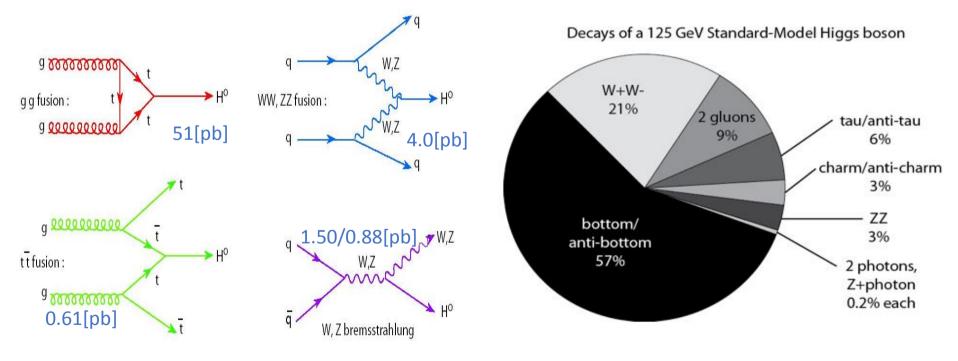
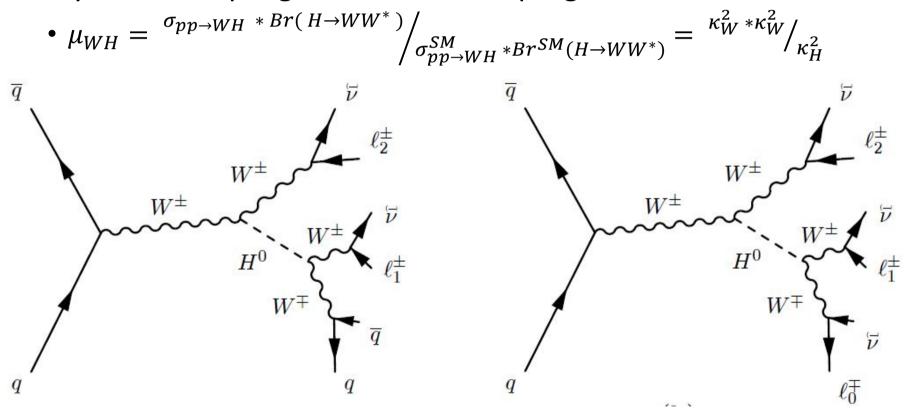
$WH \rightarrow WWW^*@ATLAS$ 单 连友

ATLAS@IHEP

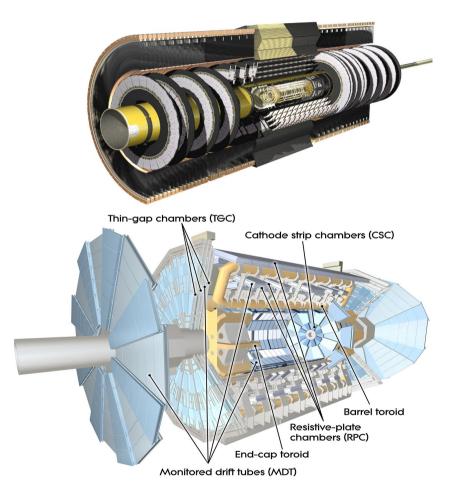

12'th 全国粒子物理学术会议, Aug 22, 合肥

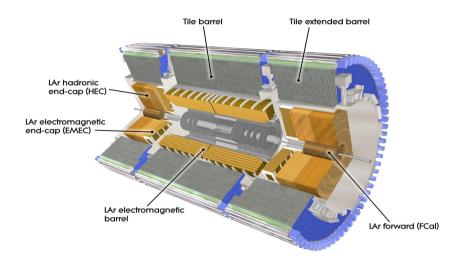
提纲

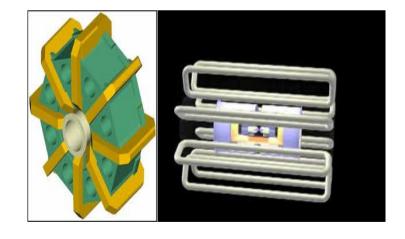
- 物理引言
- Runl 物理分析及结果
- 讨论


- 125GeV Higgs discovered at LHC
 - VH is one of the four mechanism
 - Decay to WW* is a big fraction

单连友 WH->WWW*


$WH \rightarrow WWW^*$


• Only HWW coupling enter the entire progress



单连友 WH->WWW*

The Atlas

单连友 WH->WWW*

Run I analysis

- 4.5/fb at 7TeV + 20.3/fb 8TeV since 2012 to 2013
 JHEP 08 2015 (137)
- Data samples
- Objects reconstruction & selection
- Events selection
- Background modelling
- Systematics
- Results

Data samples

Process	Generator	$\sigma(\times Br)$ [pb]	Cross-section normalisation
Higgs boson			
$VH \ (H \rightarrow WW^*)$	Pythia [25, 26] v8.165, v6.428	0.24, 0.20	NNLO QCD + NLO EW
$VH (H \rightarrow \tau \tau)$	Pythia v8.165, v6.428	0.07, 0.06	NNLO $QCD + NLO EW$
$gg \to H \ (H \to WW^*)$	POWHEG-BOX [27–30] v1.0 (r1655)+ PYTHIA v8.165, v6.428	4.1, 3.3	NNLO+NNLL QCD + NLO EW
VBF $(H \rightarrow WW^*)$	POWHEG-BOX [31] v1.0 (r1655)+ PYTHIA v8.165, v6.428	0.34, 0.26	NNLO $QCD + NLO EW$
$t\bar{t}H (H \rightarrow WW^*)$	Pythia v8.165	0.028, 0.019	NLO
Single boson			
$Z/\gamma^*(\to \ell\ell) + \text{jets} \ (m_{\ell\ell} > 10 \text{ GeV})$	Alpgen $[32]$ v2.14 + Herwig $[33]$ v6.52	16540, 12930	NNLO
HF $Z/\gamma^*(\rightarrow \ell\ell)$ +jets $(m_{\ell\ell} > 30 \text{ GeV})$	Alpgen v2.14 + Herwig v6.52	126, 57	NNLO
VBF $Z/\gamma^*(\to \ell\ell) \ (m_{\ell\ell} > 7 \text{ GeV})$	SHERPA [34] v1 4 1	53,28	LO
Top-quark			
ŧŧ	Powheg-Box [35] v1.0 (r2129)+Pythia v6.428 MC@NLO [36] v4.03	250, 180	NNLO+NNLL
$t\bar{t}W/Z$	MADGRAPH [37] v5.1.5.2, v5.1.3.28 +Pythia v6.428	0.35, 0.25	LO
tqb	AcerMC [38] v3.8 +Pythia v6.428	88, 65	NNLL
tb, tW	POWHEG-BOX [39, 40] v1.0 (r2092)+ PYTHIA v6.428	28, 20	NNLL
tZ	MADGRAPH v5.1.5.2, v5.1.5.11 + Pythia v6.428	0.035, 0.025	LO
Dibosons			
$WZ/W\gamma^*(\to \ell\ell\ell\nu)(m_{\ell\ell} > 7 \text{ GeV})$	Powheg-Box [41] v1.0 (r1508)+Pythia v8.165, v6.428	12.7, 10.7	NLO
$WZ/W\gamma^*(\to \ell\ell\ell\nu)(\min. m_{\ell\ell} < 7 \text{ GeV})$	SHERPA v1.4.1	12.2, 10.5	NLO
other WZ	Powheg-Box [41] v1.0 (r1508) + Pythia v8.165	21.2, 17.2	NLO
$q\bar{q}/qg \rightarrow Z^{(*)}Z^{(*)}(\rightarrow \ell\ell\ell\ell, \ell\ell\nu\nu) \ (m_{\ell\ell} > 4 \text{ GeV})$	POWHEG-BOX [41] v1.0 (r1556) +PYTHIA v8.165, v6.428	1.24, 0.79	NLO
$q\bar{q}/qg \to Z^{(*)}Z^{(*)}(\to \ell\ell\ell\ell, \ell\ell\nu\nu) \text{ (min. } m_{\ell\ell} < 4 \text{ GeV})$	SHERPA v1.4.1	7.3, 5.9	NLO
other $q\bar{q}/qg \rightarrow ZZ$	Powheg-Box [41] v1.0 (r1556) + Pythia v8.165	6.9, 5.7	NLO
$gg \to Z^{(*)}Z^{(*)}$	gg2ZZ [42] v3.1.2 + HERWIG v6.52 (8 TeV only)	0.59	LO
$q\bar{q}/qg \rightarrow WW$	POWHEG-BOX [41] v1.0 (r1556) + PYTHIA v6.428	54, 45	NLO
11/10	SHERPA v1.4.1 (for 2ℓ -DFOS 8 TeV only)	54	NLO
gg ightarrow WW	gg2WW [43] v3.1.2 + HERWIG v6.52	1.9, 1.1	LO
VBS $WZ, ZZ(\rightarrow \ell\ell\ell\ell, \ell\ell\nu\nu) \ (m_{\ell\ell} > 7 \text{ GeV}), WW$	SHERPA v1.4.1	1.2, 0.88	LO
$W\gamma \ (p_{\rm T}^{\gamma} > 8 \ {\rm GeV})$	ALPGEN v2.14 +HERWIG v6.52	1140, 970	NLO
$Z\gamma \ (p_{\rm T}^{\rm T} > 8 \ {\rm GeV})$	SHERPA v1.4.3	960, 810	NLO
Tribosons			
$WWW^*, ZWW^*, ZZZ^*, WW\gamma^*$	MadGraph v5.1.3.33, v5.1.5.10 + Pythia v6.428	0.44, 0.18	NLO

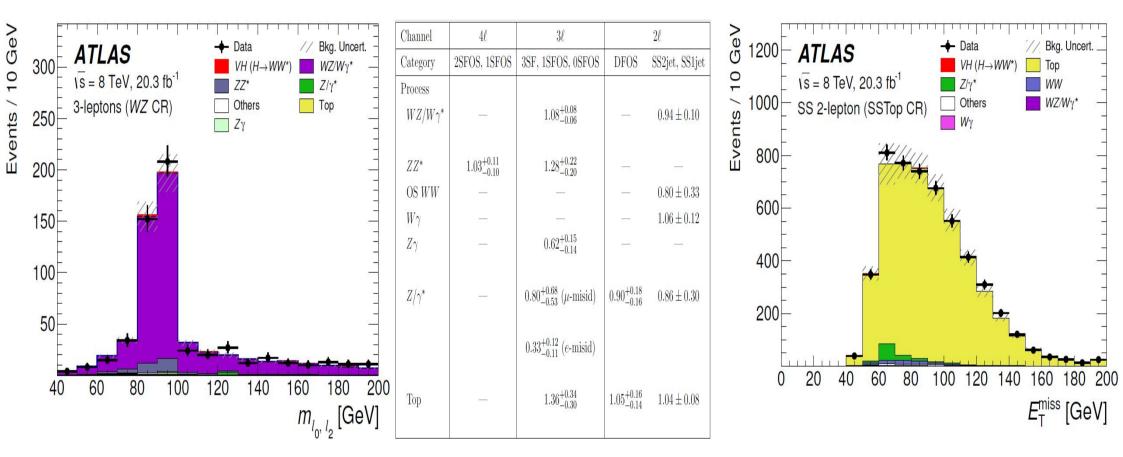
单连友 WH->WWW*

Aug 22, Hefei

Objects reconstruction & selection

- PriVtx with maximal pt2 from tracks >= 0.4GeV
- Medium muons pT>15GeV (combined from MS to ID)
- Electrons pT>15GeV upon likelihood identification
 - 3L : very tight low pt & loose if pt > 20 GeV
 - 2L : very tight low pt & medium if pt > 25 GeV
- dR = 0.2 isolation in both traker and Calo for muon & electrons
- AntiKt4 jet from topological cluster
 - 25GeV pt cut within |eta|=2.4, JVF cut against Pileup
- Leptons overlap (dR~0.1) and lepton-jet overlap (dR~0.3) are removed
- Calo-based MET is compensated with possible track pt

Events selection


Channel		3ℓ		2ℓ	
Category	3SF	1SFOS	0SFOS	SS2jet	SS1jet
Trigger	single-lepton triggers		lepton & dilepton triggers		
Num. of leptons	3	3	3	2	2
$p_{\rm T,leptons}$ [GeV]	> 15	> 15	> 15	> 22, 15	> 22, 15
Total lepton charge	± 1	± 1	± 1	± 2	± 2
Num. of SFOS pairs	2	1	0	0	0
Num. of jets	≤ 1	≤ 1	≤ 1	2	1
$p_{\rm T,jets}$ [GeV]	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)
Num. of b -tagged jets	0	0	0	0	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 30	> 30	s <u></u>	> 50	> 45
$p_{\rm T}^{\rm miss}$ [GeV]	> 20	> 20			
$ m_{\ell\ell} - m_Z $ [GeV]	> 25	> 25	3 72	> 15	> 15
Min. $m_{\ell\ell}$ [GeV]	> 12	> 12	> 6	$> 12 \ (ee, \mu\mu)$	$> 12 \ (ee, \mu\mu)$
				$> 10 \ (e\mu)$	$> 10 \; (e\mu)$
Max. $m_{\ell\ell}$ [GeV]	< 200	< 200	< 200	<u>1111111</u>	<u>121-121</u>
$m_{4\ell} \; [\text{GeV}]$					
$p_{\mathrm{T},4\ell} \; [\mathrm{GeV}]$					
$m_{\tau\tau}$ [GeV]					
$\Delta R_{\ell_0 \ell_1}$	< 2.0	< 2.0		57-50	6 6
$\Delta \phi_{\ell_0 \ell_1}$ [rad]					
$m_{\rm T} ~[{ m GeV}]$				<u></u>	$> 105 \ (m_{\mathrm{T}}^{\mathrm{lead}})$
Min. $m_{\ell_i j(j)}$ [GeV]				< 115	< 70
Min. $\phi_{\ell_i j}$ [rad]			1	< 1.5	< 1.5
Δy_{jj}		- <u></u>	<u> </u>		
$ m_{jj} - 85 $ [GeV]					

- Split signal regions
 - Signal characteristics
 - Optimization
- Xcheck
 - Divide & govern
- BDT adopted for 3I

 $(m_{\ell_0\ell_1}, m_{\ell_0\ell_2}), \, \Delta R_{\ell_0\ell_1}, \, E_{\rm T}^{\rm miss}, \, {\rm and} \, p_{\rm T}^{\rm miss}$

单连友 WH->WWW*

Background modelling

Backgrounds seem well understood, estimated and controlled

单连友 WH->WWW*

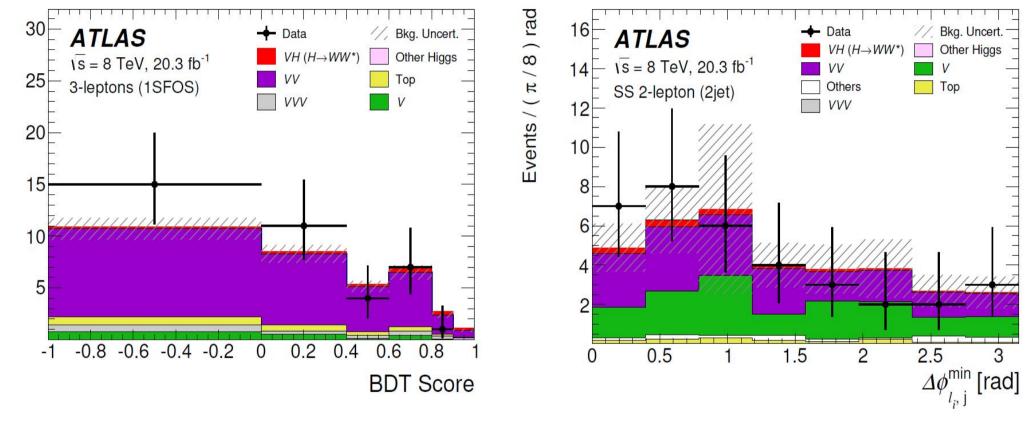
Systematics

Uncertainties on the signal strength μ_{VH} (%) Signal theoretical uncertainties $\Delta \mu_{VH}/\mu_{VH}$ +VH acceptance 11 7 Higgs boson branching fraction 7 4 QCD scale 1.6 0.7 PDF and $\alpha_{\rm S}$ 3.2 1.5VH NLO EW corrections 2.51.2

Background theoretical uncertainties109QCD scale109PDF and α_S 2.32.0VVV K-factor3.03.0MC modelling7.56.9

Experimental uncertainties		
Jet	14	9
$E_{\rm T}^{\rm miss}$ soft term	3.4	2.3
Electron	4.8	2.9
Muon	4.8	3.2
Trigger efficiency	1.7	0.9
b-tagging efficiency	4.7	3.2
Fake factor	14	12
Charge mis-assignment	1.1	1.0
Photon conversion rate	0.8	0.7
Pile-up	3.0	1.9
Luminosity	5.4	3.3
MC statistics	8	8
CR statistics	18	15
ggF SR statistics	5.5	4.4
VBF SR statistics	1.9	1.5
ggF+VBF CR statistics	10	9

The variation in signal strength is proportional to that of event yields => relative rank

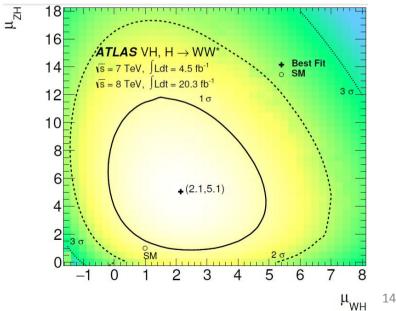

单连友 WH->WWW*

Results -- Event yields

Process		3ℓ		2ℓ	
Category	3SF	1SFOS	0SFOS	SS2jet	SS1jet
Higgs boson					
$VH~(H\to WW^*)$	0.73 ± 0.10	$1.61 {\pm} 0.18$	$1.43 {\pm} 0.16$	$1.04{\pm}0.18$	2.04 ± 0.30
$VH \ (H \to \tau \tau)$	$0.057 {\pm} 0.011$	$0.152{\pm}0.023$	$0.248 {\pm} 0.035$	$0.036 {\pm} 0.008$	$0.27 {\pm} 0.04$
ggF	$0.076 {\pm} 0.015$	$0.085 {\pm} 0.018$			
VBF					0
ttH	·				· · · · · · · · · · · · · · · · · · ·
Background					
V	0.22 ± 0.16	1.9 ± 0.6	0.37 ± 0.15	8±4	15 ± 5
VV	19 ± 3	28 ± 4	4.7 ± 0.6	11.2 ± 2.1	26 ± 4
VVV	0.8 ± 0.3	2.2 ± 0.7	2.93 ± 0.29		$0.47 {\pm} 0.05$
Top	$0.91 {\pm} 0.26$	$2.4{\pm}0.6$	3.7 ± 0.9	$0.75 {\pm} 0.19$	1.3 ± 0.5
Others				$0.71 {\pm} 0.30$	$0.60 {\pm} 0.24$
Total	22 ± 4	34 ± 6	11.7 ± 1.8	21 ± 5	44 ± 6
Observed events	22	38	14	25	62

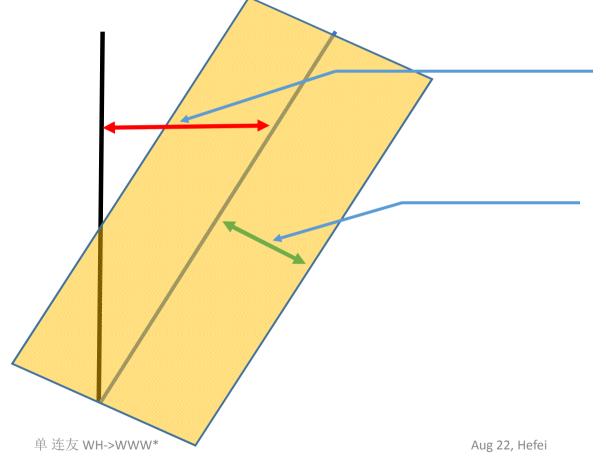
单连友 WH->WWW*

Result -- distributions


MC simulation and Bckg-estimation agree well to data !

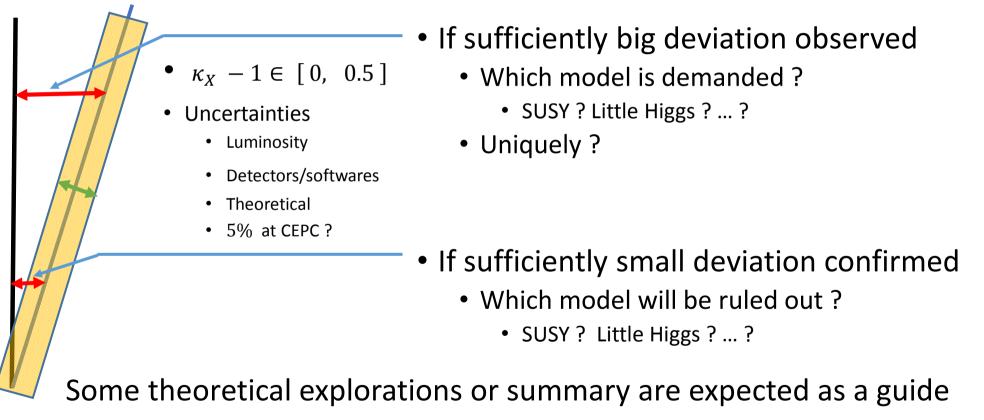
Events / bin width

Results – significance & strength


- Likelihood fit : $q_{\mu} = -2 \ln \frac{\mathcal{L}(\mu, \hat{\theta}_{\mu})}{\mathcal{L}_{\max}}$
- Signal strength $\mu_{WH} = 2.1^{+1.5}_{-1.3} \,(\text{stat.})^{+1.2}_{-0.8} \,(\text{sys.})$
- Significance $Z_0 = 2.1(0.66)$ with $m_H = 125.36 \text{ GeV}$
- Also with ggF and VBF combined
 - As backgrounds
 - strength correlated
 - experimental uncertainties correlated

 $\mathrm{Br}(H \to WW^*) = \frac{\kappa_V^2 \Gamma_{\mathrm{SM}}(H \to WW^*)}{\kappa_F^2 \Gamma_{\mathrm{SM}}(H \to f\overline{f}) + \kappa_F^2 \Gamma_{\mathrm{SM}}(H \to gg) + \kappa_V^2 \Gamma_{\mathrm{SM}}(H \to VV)}$

单连友 WH->WWW*


讨论: measurement of Higgs coupling?

$$\kappa_W - 1 \in [0, 1]$$

- Uncertainties
 - Statistical (luminosity)
 - Experimental
 - Theoretical
 - $50\%\sim 20\%\,$ at LHC

讨论: more precise measurements at CEPC ---but neither NP model ruled out nor unique NP model established ?

