

应用于高时间分辨能力测量的多 通道专用集成电路研究

清华大学工程物理系

核电子学实验室

<u>陈羽</u>,朱雪洲,袁振雄,周新,

邓智,刘以农

中国物理学会高能物理分会第十二届全国粒 子物理学术会议 安徽 合肥 2016年8月24日

2016/8/24

1、高时间分辨探测系统

- 时间分辨能力与读出电子学系统
- 基于电流模式的读出ASIC

2、MRPC探测器读出ASIC研究

• CAD-I & CAD-II

3、PET探测系统读出ASIC研究

- TIMPIC
- EXYT

4、总结与之后的工作

高时间分辨能力辐射探测系统

• 时间测量在辐射探测系统中扮演重要角色。

大型物理实验装置——飞行时间探测系统 (Time-of-flight, TOF) 核医学成像系统——正电子发射断层成像 (Positron Emission Tomography, PET)

• 高时间分辨能力探测系统对各个环节都有要求

使用高探测效率、高时间分 辨能力的探测器:

- ▶ 多气隙阻性板室(MRPC)
- ▶ 快闪烁体+光电转换器件

探测信号的时间甄别

- 读出电子学对甄别时间抖动的影响:
 - 给定阈值*Ith*,波形过阈时刻Tpick-off的抖动(rms)受波形斜率与噪声影响:

$$\sigma_{T_{pick-off}} = \frac{\sigma_{I}}{dI_{out}(t)/dt} = \frac{\sqrt{\sigma_{det}^{2} + \sigma_{elec}^{2}}}{dI_{out}(t)/dt}$$

- 斜率dIout/dt大 → 高带宽前端电路
- 电子学噪声σelec小→低噪声前端电路

】 相制约 ▮

17mm

- 多通道探测器读出电路 → 低功耗、低复杂度的电路结构
- 采用专用集成电路(Application Specific Integrated Circuit, ASIC)
 - 集成度高, 面积小
 - 功能可拓展性强,降低系统互联设计的难度
 可以较为灵活的实现复杂的算法和电路功能
 - 功耗相较于分立器件小

1、高时间分辨探测系统 时间分辨能力与读出电子学系统 • 基于电流模式的读出ASIC 2、MRPC探测器读出ASIC研究 CAD-I & CAD-II PET探测系统读出ASIC研究 3、 TIMPIC FXYT

4、总结与之后的工作

▶ 定时探测器本征时间分辨可做到20ps rms
 ▶ MRPC信号主要特性:

参数	值
上升时间	~ 300ps
FWHM 半高宽	1 ns ~ 2 ns
下降时间	~ 300ps
幅度	$0.5 \text{mV} \sim 30 \text{mV} (10 \mu \text{A} \sim 600 \mu \text{A})$

MRPC探测器对读出电子学提出了很高的要求:

✔ 高带宽

- : >百MHz水平, 与信号上升时间相当
- ✔ 低输入阻抗
- ✔ 低噪声
- ✔ 低阈值甄别
- ✔ 低功耗
- ✔ 低串扰

: 探测器输出信号幅度小

 以NINO和PADI为为代表的基于电压模式的读出ASIC,已经应用于多个 大型试验装置中,取得了较好的时间分辨能力。
 表1.1 NINO芯片性能参数 表1.2 PADI系列芯片性能参数

参数	指标	参数 PADI-1		PADI-2,-3	PADI-6,-7	PADI-8
大峰时间	1ns	放大器带宽 [MHz]	280	293	416	411
	1115	放大器增益 [V/V]	74	87	244	251
差分 <mark>输入</mark> 阻抗	$90\Omega \sim 140\Omega$	输入阻抗 [O]	30-450	37-370	38-165	30-160
甄别阈值	$10 \text{fC} \sim 100 \text{fC}$	输入空动面则调估 [fC]	42	29	14	25
前识时间料动	< 25ng	制八寺XX 靴 別 國 [[C]	42	38	14	25
的们们们们不约	< 25ps	时间抖动 @10mV[ps]	< 10	< 10	< 10	< 10
功耗	30 mW/Channel	功耗 [mW/Channel]	21.6	17.4	17.7	17

- 基于电流模式的CAD(Current Amplifier and Discriminator)芯片
 - 前沿定时,过阈时间TOT用于时间游动的矫正
 - CAD-I芯片采用0.35微米工艺,4通道单端输入,在单通道<10mW的 功耗水平上实现了<20ps rms (@170 fC)的电子学抖动,并与探测器 连接实现了200ps rms的探测系统时间分辨能力。(Zhou X, Deng Z, Wang Y, et al. Development of a current-mode ASIC for MRPC detectors[J]. Journal of Instrumentation, 2014, 9(10): C10040.)

CAD-II芯片整体结构

0.18微米CMOS工艺, 8 通道模拟差分输入+LVDS输出。 •

电流模式(Current Mode)读出电路,直接 对输入电流信号进行放 大、滤波和过阈甄别, 省去电流-电压转换。

- ▶ 帯宽高
- ▶ 输入阻抗小
- ▶ 动态范围大
- ▶ 电路结构简单
- ▶ 受电源电压影响小

CAD-II 芯片及其测试系统

2.8 mm

时间分辨能力测量

红色

value mean min max sdev num status

> SINX DC 200 mV/divi -5.500 mV

时间抖动测量

TOT脉宽-脉冲幅度关系:

CAD-II电子学测试总结

• CAD-II芯片在保证低功耗的条件下,实现了低阈值甄别和高时间分辨的特点,电子学测试具有与NINO和PADI相比拟的性能。

设计参数	CAD-II Sim	CAD-II Test	NINO	PADI-6	PADI-8		
通道数	8	8	8	4	8		
前放带宽	380MHz	N-A	N-A	416MHz	411MHz		
输入阻抗	30~80Ω	32 ~ 80Ω	40~75Ω	38 ~ 165Ω	30~160 Ω		
等效输入噪声	0.53uA (26.5uV)	0.56uA (28uV)	0.57fC	23.8uV	22.0uV		
最小阈值	5fC	9fC	10fC	14fC	25fC		
每通道功耗	13.9mW	15mW	30mW	17.7mW	17mW		
前沿时间抖动 @200uA(10mV)	<10ps	<10ps	<20ps	<10ps	<10ps		

- ▶ 连接探测器的测试正在进行
- More Details in : Z. X. Yuan, Z. Deng, Y. Wang, and Y. N. Liu. CAD-II: the second version current-mode readout ASIC for high-resolution timing measurement. *Journal of Instrumentation*, Vol. 11, July 2016.

• EXYT

PET探测系统

PET读出ASIC的研究方向

- LYSO/SiPM探测器时间分辨特性的研究,及其对读出电子学的要求:
 - 低输入阻抗、高带宽、低噪声、低甄别阈值
 - 考虑探测器的非理想因素: 暗噪声
- 探测系统温度、偏置电压的控制:
 - 单通道功耗控制;
 - 单通道温度、工作电压的补偿
- 多通道设计——能量、位置和时间信息的输出与数字化。

1、基于时间的读出ASIC —— TIMPIC

2016/8/24

TIMPIC测试

144mV 560mV

∆: @:

测试系统

Blue:测试信号 Yellow:电容积分电压 Purple:输出脉冲

TIMPIC芯片测试结果

- More Details in :
- Deng Z, Lan A K, Sun X, et al. Development of an eight-channel time-based readout ASIC for PET applications[J]. IEEE Transactions on Nuclear Science, 2011, 58(6): 3212-3218.
- Zhu X, Deng Z, Lan K A, et al. TIMPIC-II: the second version time-based-readout ASIC for SSPM based PET applications[C]//Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE. IEEE, 2012: 1474-1478.

探测系统测试结果

Timing Resolution

TIMPIC在探测系统中的应用

- Shao, Yiping, et al. "Development of a prototype PET scanner with depth-of-interaction measurement using solid-state photomultiplier arrays and parallel readout electronics." *Physics in medicine and biology* 59.5 (2014): 1223.
 - > 256 CHs, 2mm Spacing Resolution on 3 dimensions.

- 结合SensL FB和FJ系列双端输出SiPM,通过优化电路结构,在保证低功耗的条件下进一步提高时间分辨能力。
 - 输入带宽: 210MHz 差分增益: 160mV/mA
 - 单通道功耗: 3mW 动态范围: 0~10mA
- 采用加权结构,将64个通道位置信息编码到3路输出信号
- 通道阈值单独调节——补偿通道间差异性

门控方法: 改善死时间和噪声叠加问题

芯片测试 & 探测模块搭建

2016/8/24

PET探测模块测试——多通道位置分辨

- 12x12 LYSO晶体阵列
 - 2.7x2.7x20mm³

- 16x16 LYSO晶体阵列
 - 2x2x20mm³

2016/8/24

PET读出ASIC性能对比

年 份	研究组	名称	通道数	多通道输出 结构	功耗 (毎通 道)	所用工 艺	最佳CRT FWHM(或 电子学rms)	LYSO晶 体尺寸 (mm^3)	所使 用 SiPM
2009	INFN	BASIC	8	加权	6.6mW	0.35 µm	50ps rms		
2015		EXYT	64	加权	3mW	0.18 µm	290ps	2x2x14	SensL
2011	INFN	VATA64	64	多路复用	15mW	0.35 μm	24 ns	12x12x5	MPPC
2013	IN2P3 Omega	PETIROC	16	多路复用	3.5mW	0.35 µm	402ps	3x3x3	KETEC
2014		TIMPIC2	16	脉冲宽度调制	10mW	0.35 μm	~100ps rms		
2014	海德堡大学	STiC3	64	脉冲宽度调制	25mW	0.18 µm	214ps	3.1x3.1x15	MPPC
2014	CERN	NINO	32	脉冲宽度调制	20mW	0.25 μm	175ps	3x3x15	MPPC
2012	海德堡大学	PETA4	36	片内ADC/TDC	40mW	0.18 µm	~460ps	4x4x25	FBK
2011	IPHC	IMOTEPAD	64	片内ADC/TDC	15mW	0.35 µm	42ps rms		
2012	IPHC	PETROC	10	片内ADC/TDC	13mW	0.35 µm	159ps rms		
2013	JAXA	MPPC32	32	片内ADC+TAC	16mW	0.35 μm	491ps	3x3x10	MPPC
2013	IN2P3 Omega	SPIROC	36	片内ADC+TAC	2.5mW	0.35 µm	223ps rms		
2016	LIP	TOFPET2	64	片内ADC+TAC	8mW	0.11 μm	20ps rms		

总结与展望

- 研究组基于电流模式的电路结构,设计了应用于高时间分辨 探测系统的读出ASIC,具有电路结构简单、输入阻抗小、带 宽高、动态范围大、受电源电压影响小等优点。
- 针对MPRC探测器和PET探测系统的设计了多个系列的多通道 ASIC,在保证低功耗的条件下实现了10ps rms水平的高时间 分辨能力,并且实现了通道密度较高的条件下信号的有效输 出。
- 下一阶段,结合探测系统的设计要求,在电路结构、参数和信号读出方法上做进一步的优化和升级。
 - 应用于新型探测器的前端参数优化 → <200ps CRT for PET
 - 通道信号的片上数字化输出

Laboratory of Nuclear Electronics

谢谢!

Thank You!

多通道读出电路设计

Ε

Х

Y

- 通道信号加权
 - 噪声叠加
 - 死时间的增加
- 基于时间的读出方式
 - 脉冲宽度调制:
 - 过阈时间(Time-over-threshold, TOT):

- 多路复用
- 片上ADC/TDC的数字化

E Resistor Network

X Resistor Network

Y Resistor Network

1 2 3 4 5 6 7 8

- 电压模式(Voltage-mode)
 电路:
 - 以电压放大器和电压比 较器为主要单元,中间 信号为电压
 - 一受寄生参数影响小,是
 分立器件读出电路的主
 流选择

• 电流模式 (Voltage-mode)

▶ 带宽高

电路:

- ▶ 输入阻抗小
- > 动态范围大
- ▶ 电路结构简单
- ▶ 受电源电压影响小

- 在ASIC内容易实现 - 噪声大

CAD-II 芯片通道间串扰

CAD-I芯片连接探测器的测试

