



# Exotic hadrons with heavy quarks

#### 郭奉坤

中国科学院理论物理研究所

第十二届全国粒子物理学术研讨会,2016年8月22-26日,合肥

- Exotic hadrons and exotic quantum numbers
- Experimental observations of exotic candidates
- Distinguishing kinematic effects from genuine resonances
- Examples: X(3872) and  $Z_c(3900)$

A comprehensive review: H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Phys.Rept.639(2016)1

#### Ordinary and exotic hadrons

- In quark model notation
  - Ordinary mesons and baryons
  - Exotic hadrons: multiquark states, hybrids and glueballs
- Hadronic molecules: extended, loosely bound states composed of asymptotic hadrons (distance >> hadron size), analogues of deutron and other light nuclei

Once the same quantum numbers, always mix  $\Rightarrow$  source of difficulties/confusions

#### Ordinary and exotic hadrons

- In quark model notation
  - Ordinary mesons and baryons

Exotic hadrons: multiquark states, hybrids and glueballs



 Hadronic molecules: extended, loosely bound states composed of asymptotic hadrons (distance >> hadron size), analogues of deutron and other light nuclei



Once the same quantum numbers, always mix  $\Rightarrow$  source of difficulties/confusions

#### Ordinary and exotic hadrons

- In quark model notation
  - Ordinary mesons and baryons

Exotic hadrons: multiquark states, hybrids and glueballs



 Hadronic molecules: extended, loosely bound states composed of asymptotic hadrons (distance >> hadron size), analogues of deutron and other light nuclei



• Once the same quantum numbers, always mix  $\Rightarrow$  source of difficulties/confusions

#### Exotic quantum numbers: $J^{PC}$

- $J^{PC}$  of regular  $q\bar{q}$  meson  $P = (-1)^{L+1}$   $C = (-1)^{L+S}$  for mesons without flavor L: orbital angular momentum
  - S = (0, 1): total spin of q and  $\bar{q}$



For S=0, the meson spin J=L, one has  $P=(-1)^{J+1}$  and  $C=(-1)^J$  $J^{PC}={\rm even}^{-+}$  and odd<sup>+-</sup>

 $^{\textcircled{S}}$  For S=1, one has  $P=C=(-1)^{L+1}.$ 

$$J^{PC} = 1^{--}, \{0, 1, 2\}^{++}, \{1, 2, 3\}^{--}, \dots$$

• Exotic  $J^{PC}$  for mesons:

$$J^{PC} = 0^{--}, \operatorname{even}^{+-} \operatorname{and} \operatorname{odd}^{-+}$$

#### Exotic quantum numbers: $J^{PC}$

- $J^{PC}$  of regular  $q\bar{q}$  meson  $P = (-1)^{L+1}$   $C = (-1)^{L+S}$  for mesons without flavor
  - *L*: orbital angular momentum S = (0, 1): total spin of *q* and  $\bar{q}$



For S = 0, the meson spin J = L, one has  $P = (-1)^{J+1}$  and  $C = (-1)^J$  $J^{PC} = even^{-+}$  and odd<sup>+-</sup>

For S = 1, one has  $P = C = (-1)^{L+1}$ .

$$J^{PC} = 1^{--}, \{0, 1, 2\}^{++}, \{1, 2, 3\}^{--}, \dots$$

• Exotic J<sup>PC</sup> for mesons:

 $J^{PC} = 0^{--}, \operatorname{even}^{+-} \operatorname{and} \operatorname{odd}^{-+}$ 

#### Exotic quantum numbers: $J^{PC}$

- $J^{PC}$  of regular  $q\bar{q}$  meson  $P = (-1)^{L+1}$   $C = (-1)^{L+S}$  for mesons without flavor
  - *L*: orbital angular momentum S = (0, 1): total spin of *q* and  $\bar{q}$



For S = 0, the meson spin J = L, one has  $P = (-1)^{J+1}$  and  $C = (-1)^J$  $J^{PC} = even^{-+}$  and odd<sup>+-</sup>

For S = 1, one has  $P = C = (-1)^{L+1}$ .

$$J^{PC} = 1^{--}, \{0, 1, 2\}^{++}, \{1, 2, 3\}^{--}, \dots$$

• Exotic  $J^{PC}$  for mesons:

$$J^{PC}=0^{--}, \mbox{even}^{+-} \mbox{ and } \mbox{odd}^{-+}$$

#### "Explicitly exotic" multiquarks

• Favorite multiquark candidates:

explicitly flavor exotic: minimal number of quarks  $\geq 4$ 

• Example: X(5568) by D0 Collaboration ( $p\bar{p}$  collisions)



 $M = (5567.8 \pm 2.9^{+0.9}_{-1.9}) \text{ MeV}$   $\Gamma = (21.9 \pm 6.4^{+5.0}_{-2.5}) \text{ MeV}$  $B_s^0 \pi^+$ : minimal quark contents is  $\bar{b}s \bar{d}u$  !

immediately, negative result by LHCb LHCb-CONF-2016-004; arXiv:1608.00435 and by CMS CMS-PAS-BPH-16-002

difficulties in all possible structure explanations

Burns, Swanson, arXiv:1603.04366; FKG, Meißner, Zou, Commun.Theor.Phys. 65 (2016) 593

PRL117(2016)022003

#### "Explicitly exotic" multiquarks

• Favorite multiquark candidates:

explicitly flavor exotic: minimal number of quarks  $\geq 4$ 

• Example: X(5568) by D0 Collaboration ( $p\bar{p}$  collisions)



 $M = (5567.8 \pm 2.9^{+0.9}_{-1.9}) \text{ MeV}$   $\Gamma = (21.9 \pm 6.4^{+5.0}_{-2.5}) \text{ MeV}$  $B_s^0 \pi^+$ : minimal quark contents is  $\bar{b}s\bar{d}u$  !

immediately, negative result by LHCb
LHCb-CONF-2016-004; arXiv:1608.00435
and by CMS
CMS-PAS-BPH-16-002

difficulties in all possible structure explanations

Burns, Swanson, arXiv:1603.04366; FKG, Meißner, Zou, Commun. Theor. Phys. 65 (2016) 593

PRL117(2016)022003

# Less "explicitly exotic" multiquarks: $m{Z}_{m{c}}^{\pm}$ and $Z_{b}^{\pm}$ with hidden $m{Q}ar{m{Q}}$

- $Z_c^{\pm}, Z_b^{\pm}$ : charged structures in heavy quarkonium mass region,  $Q\bar{Q}\bar{d}u, Q\bar{Q}\bar{u}d$  $Z_c(3900), Z_c(4020), Z_c(4200), Z_c(4430), \ldots$  talks on Belle, BESIII, LHCb
- $Z_b(10610)$  and  $Z_b(10650)$ : Belle, arXiv:1105.4583; PRL108(2012)122001 observed in  $\Upsilon(10860) \rightarrow \pi^{\mp}[\pi^{\pm}\Upsilon(1S, 2S, 3S)/h_b(1P, 2P)]$

also in  $\Upsilon(10860) \rightarrow \pi^{\mp} [B^{(*)} \bar{B}^*]^{\pm}$ 

Belle, arXiv:1209.6450; PRL116(2016)212001

Less "explicitly exotic" multiquarks:  $Z_c^{\pm}$  and  $Z_b^{\pm}$  with hidden  $Q\bar{Q}$ 

- $Z_c^{\pm}, Z_b^{\pm}$ : charged structures in heavy quarkonium mass region,  $Q\bar{Q}d\bar{u}, Q\bar{Q}\bar{u}d$  $Z_{c}(3900), Z_{c}(4020), Z_{c}(4200), Z_{c}(4430), \ldots$ talks on Belle, BESIII, LHCb
- $Z_b(10610)$  and  $Z_b(10650)$ : Belle, arXiv:1105.4583; PRL108(2012)122001 observed in  $\Upsilon(10860) \rightarrow \pi^{\mp} [\pi^{\pm} \Upsilon(1S, 2S, 3S)/h_b(1P, 2P)]$



Fena-Kun Guo (ITP)

Exotic hadrons with heavy guarks

# $Z_c^\pm$ and $Z_b^\pm$ with hidden Qar Q (II)

•  $Z_c(3900/3885)^{\pm}$ : structure around 3.9 GeV seen in  $J/\psi\pi$  by BESIII and Belle in  $Y(4260) \rightarrow J/\psi\pi^+\pi^-$ , BESIII, PRL110(2013)252001; Belle, PRL110(2013)252002 and in  $D\bar{D}^*$  by BESIII in  $Y(4260) \rightarrow \pi^{\pm}(D\bar{D}^*)^{\mp}$  BESIII, PRD92(2015)092006



can be described by the same state

Aldaladejo et al., PLB755(2016)337

#### $P_c(4380,4450)$ : pentaquark-like with hidden $car{c}$ LHCb, PRL115(2015)072001

PRL 112, 222002 (2014)

PRL 115, 07201 (2015)



| State                              | Mass (MeV)                | Width (MeV)              | Fit frac. (%)                | Sig. | State                              | Mass (MeV)     | Width (MeV) | Fit frac. (%) | Sig. |
|------------------------------------|---------------------------|--------------------------|------------------------------|------|------------------------------------|----------------|-------------|---------------|------|
| Z <sub>c</sub> (4430) <sup>+</sup> | $4475 \pm 7^{+15}_{-25}$  | $172 \pm 13^{+37}_{-34}$ | $5.9 \pm 0.9 ^{+1.5}_{-3.3}$ | 14σ  | P <sub>c</sub> (4450) <sup>+</sup> | 4449.8±1.7±2.5 | 39± 5±19    | 4.1±0.5±1.1   | 12σ  |
| Belle                              | $4485 \pm 22^{+28}_{-11}$ | $200{\pm}46^{+26}_{-35}$ | $10.3\pm3.5^{+4.3}_{-2.3}$   | 5σ   | P <sub>c</sub> (4380) <sup>+</sup> | 4380 ±8±29     | 205±18±86   | 8.4±0.7±4.2   | 9σ   |

- $J^{P}=1^+$  at 9.7 $\sigma$  incl. syst. (in Belle at 3.4 $\sigma$ )
- Best fit has J<sup>P</sup>=(3/2<sup>-</sup>, 5/2<sup>+</sup>), also (3/2<sup>+</sup>, 5/2<sup>-</sup>) & (5/2<sup>+</sup>, 3/2<sup>-</sup>) cannot be ruled out

第十二届全国粒子物理学术会议

张黎明

9







Note: X(3915) is listed by PDG as  $\chi_{c0}(2P)$ , also suggested in X. Liu, Z.-G. Luo, Z.-F. Sun, PRL104(2010)122001; problems: FKG, Meißner, PRD86(2012)091501; Olsen, PRD91(2015)057501 probably just  $\chi_{c2}(2P)$  with  $2^{++}$  Z.-Y. Zhou, Z. Xiao, H.-Q. Zhou, PRL115(2015)022001



Note: X(3915) is listed by PDG as  $\chi_{c0}(2P)$ , also suggested in X. Liu, Z.-G. Luo, Z.-F. Sun, PRL104(2010)122001; problems: FKG, Meißner, PRD86(2012)091501; Olsen, PRD91(2015)057501 probably just  $\chi_{c2}(2P)$  with  $2^{++}$  Z.-Y. Zhou, Z. Xiao, H.-Q. Zhou, PRL115(2015)022001

## $\overline{X(3872)}$ : best established

• X(3872) Belle, PRL91(2003)262001



#### Belle, BaBar, BESIII, CDF, CMS, D0, LHCb

• Discovered in  $B^{\pm} \rightarrow K^{\pm} J/\psi \pi \pi$ , mass extremely close to the  $D^0 \bar{D}^{*0}$  threshold  $M_X = (3871.69 \pm 0.17) \text{ MeV}$ 

 $M_{D^0} + M_{D^{*0}} - M_X = (0.12 \pm 0.19) \text{ MeV}$ 

- $\Gamma < 1.2~\text{MeV}$  Belle, PRD84(2011)052004
- $J^{PC} = 1^{++}$  LHCb PRL110(2013)222001
  - $\Rightarrow$  *S*-wave coupling to  $D\bar{D}^*$
- Observed in the  $D^0 \bar{D}^{*0}$  mode as well BaBar, PRD77(2008)011102
- Large coupling to  $D^0 \overline{D}^{*0}$ :  $\mathcal{B}(X \to D^0 \overline{D}^{*0}) > 24\%$
- PDG2014
- Large isospin breaking:  $\frac{\mathcal{B}(X \to \omega J/\psi)}{\mathcal{B}(X \to \pi^+\pi^- J/\psi)} = 0.8 \pm 0.3$

## X(3872): best established

 X(3872) Belle, PRL91(2003)262001 b) Events / ( 0.005 GeV ) <sup>2</sup> 01 <sup>21</sup> 0.005 GeV ) BELLE 3.82 3.84 3.86 3.88 3.9 3.92 M(J/ψ ππ) (GeV) Events/2 MeV/c X(3872) All  $\overline{D}^{*0}D^0$  modes

# $A = \frac{14}{10^{-1}} + \frac{14}{10^{-1}} +$

#### Belle, BaBar, BESIII, CDF, CMS, D0, LHCb

Discovered in  $B^{\pm} \rightarrow K^{\pm} J/\psi \pi \pi$ , mass extremely close to the  $D^0 \bar{D}^{*0}$  threshold  $M_X = (3871.69 \pm 0.17) \text{ MeV}$ 

 $M_{D^0} + M_{D^{*0}} - M_X = (0.12 \pm 0.19) \text{ MeV}$ 

- $\Gamma < 1.2~{
  m MeV}$  Belle, PRD84(2011)052004
- $J^{PC} = 1^{++}$  LHCb PRL110(2013)222001
  - $\Rightarrow$  *S*-wave coupling to  $D\bar{D}^*$
- Observed in the  $D^0 \overline{D}^{*0}$  mode as well BaBar, PRD77(2008)011102
- Large coupling to  $D^0 \overline{D}^{*0}$ :  $\mathcal{B}(X \to D^0 \overline{D}^{*0}) > 24\%$

$$\begin{array}{l} \text{Large isospin breaking:} \\ \frac{\mathcal{B}(X \rightarrow \omega J/\psi)}{\mathcal{B}(X \rightarrow \pi^+\pi^- J/\psi)} = 0.8 \pm 0.3 \end{array}$$

Feng-Kun Guo (ITP)

PDG2014

Always many models for each observed structure:

- Dynamics ⇒ poles in the *S*-matrix: genuine physical states. The origins of the poles can be different:
  - ${}^{\hspace*{-0.5ex}\hspace*{-0.5ex}\hspace*{-0.5ex}\hspace*{-0.5ex}\hspace*{-0.5ex}\hspace*{-0.5ex}}$  normal Q ar Q
  - hybrid states
  - tetraquarks
  - hadronic molecules
  - hadro-charmonia / hadro-bottomonia: heavy quarkonium bound inside light
     hadronic matter
     S. Dubynskiy, M.B. Voloshin, PLB666(2008)344
- Kinematic effects  $\Rightarrow$  branching points of S-matrix
  - normal two-body threshold cusp
  - triangle singularity

Always many models for each observed structure:

- Dynamics ⇒ poles in the *S*-matrix: genuine physical states. The origins of the poles can be different:
  - ${}^{\hspace*{-0.5ex}\hspace*{-0.5ex}\hspace*{-0.5ex}\hspace*{-0.5ex}\hspace*{-0.5ex}\hspace*{-0.5ex}}$  normal Q ar Q
  - hybrid states
  - tetraquarks
  - hadronic molecules
  - hadro-charmonia / hadro-bottomonia: heavy quarkonium bound inside light
     hadronic matter
     S. Dubynskiy, M.B. Voloshin, PLB666(2008)344
- Kinematic effects  $\Rightarrow$  branching points of S-matrix
  - normal two-body threshold cusp
  - triangle singularity

First, need to distinguish kinematic effects from a genuine state

#### Threshold cusp (I)

Cusps due to kinematical effect:



Unitarity 
$$\Rightarrow \operatorname{Im} \mathcal{A}(s) \propto C^*(s) \frac{q_{\mathsf{cm}}(s)}{\sqrt{s}} B(s) \theta(s - (m_1 + m_2)^2)$$

Analyticity 
$$\Rightarrow$$
 dispersion relation:  $\mathcal{A}(s) = \frac{1}{\pi} \int_{s_0}^{\infty} ds' \frac{\operatorname{Im} \mathcal{A}(s')}{s' - s - i\epsilon}$ 

- There is always a cusp at an S-wave threshold if they couple
- Strength of the cusp measures the interaction strength

- Cusp effect has been well-known for a long time:
  - $\square$  example of the cusp in  $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$
  - is the most precise measurement of  $\pi\pi$  scattering length by NA48/2

Meißner, Müller, Steininger (1997); Cabibbo (2004); Colangelo, Gasser, Kubis, Rusetsky (2006); ...



 $2M_{\pi^0} = 270 \; {\rm MeV} \quad < \quad 2M_{\pi^\pm} = 279 \; {\rm MeV}$ 

#### **Threshold cusp (III)**

• Models of  $Z_b(10610, 10650), Z_c(3900, 4020)$  as threshold cusps



Initial pion radiation: D.-Y.Chen, X.Liu, PRD84(2011)094003; PRD84(2011)034032; Chen,
 Liu, Matsuki, PRD84(2011)074032; PRL110(2013)232001; ...

• But  $Z_c(3900)[Z_b]$  as a narrow peak in  $D\overline{D}^*[B\overline{B}^*]$  cannot be only due to cusp:

prominent cusp  $\Rightarrow$  strong int.  $\Rightarrow$  pole! FKG

#### **Threshold cusp (III)**

• Models of  $Z_b(10610, 10650), Z_c(3900, 4020)$  as threshold cusps



Initial pion radiation: D.-Y.Chen, X.Liu, PRD84(2011)094003; PRD84(2011)034032; Chen,

Liu, Matsuki, PRD84(2011)074032; PRL110(2013)232001; ...



• But  $Z_c(3900)|Z_b|$  as a narrow peak in  $DD^*|BB^*|$  cannot be only due to cusp:

prominent cusp  $\Rightarrow$  strong int.  $\Rightarrow$  pole!

#### **Threshold cusp (III)**

• Models of  $Z_b(10610, 10650), Z_c(3900, 4020)$  as threshold cusps



Initial pion radiation: D.-Y.Chen, X.Liu, PRD84(2011)094003; PRD84(2011)034032; Chen,

Liu, Matsuki, PRD84(2011)074032; PRL110(2013)232001; ...



#### Triangle singularity (I)



- Triangle singularity: leading Landau singularity of a triangle diagram, anomalous threshold; solution of Landau equation
   Landau (1959)
- <u>Coleman–Norton theorem</u>: S. Coleman and R. E. Norton, Nuovo Cim. 38 (1965) 438
   The singularity is on the physical boundary if and only if the diagram can be interpreted as a classical process in space-time.
- Translation:
  - The intermediate particles can go on shell simultaneously  $\vec{p}_2 \parallel \vec{p}_3$ , particle-3 can catch up with particle-2 to rescatter like a classic process
- requires very special kinematics ⇒ process dependent!

#### Triangle singularity (I)



- Triangle singularity: leading Landau singularity of a triangle diagram, anomalous threshold; solution of Landau equation
   Landau (1959)
- <u>Coleman–Norton theorem</u>: S. Coleman and R. E. Norton, Nuovo Cim. 38 (1965) 438
   The singularity is on the physical boundary if and only if the diagram can be interpreted as a classical process in space-time.
- Translation:
  - IS all three intermediate particles can go on shell simultaneously IS  $\vec{p}_2 \parallel \vec{p}_3$ , particle-3 can catch up with particle-2 to rescatter like a classical process
- requires very special kinematics ⇒ process dependent!

#### Triangle singularity (II)

Models of triangle singularity for exotic candidates with hidden Q ar Q

 $\begin{array}{ll} \hline & Y(4260) \rightarrow Z_c \pi \rightarrow J/\psi \pi \pi & \mbox{A. Szczepaniak, Phys.Lett. B747} (2015) 410 \\ \hline & \mbox{Importance of triangle sing. in } Y(4260) \rightarrow Z_c \pi \mbox{ already noticed, but } Z_c \mbox{ pole still needed} & \mbox{Q.Wang, Hanhart, Q.Zhao, PRL111(2013)132002; PLB725(2013)106} \\ \hline & \mbox{triangle singularities relevant for } P_c & \mbox{FKG, MeiBner, W.Wang,Z.Yang, PRD92(2015)071502; X.-H.Liu,Q.Wang,Q.Zhao, PLB757(2016)231} \\ \end{array}$ 

Schmid theorem:

C. Schmid, Phys. Rev. 154 (1967) 1363

see also, A. V. Anisovich, V. V. Anisovich, Phys. Lett. B 345 (1995) 321

Triangle singularity cannot produce an additional peak in the invariant mass distribution of the elastic channel when neglecting inelasticity

Nearby the triangle singularity:  $\mathcal{A}_{(a)+(b)}(s) \sim e^{2i\,\delta_{\chi_{c1}p}(s)}\mathcal{A}_{(a)}(s)$ here  $\delta_{\chi_{c1}p}$  is the elastic  $\chi_{c1}p$  scattering phase shift

Feng-Kun Guo (ITP)

Exotic hadrons with heavy quarks

#### Triangle singularity (II)

- Models of triangle singularity for exotic candidates with hidden QQ
  - $\mathbb{I}$   $Y(4260) \rightarrow \mathbb{Z}_c \pi \rightarrow J/\psi \pi \pi$ A. Szczepaniak, Phys.Lett. B747 (2015) 410 RP . Importance of triangle sing. in  $Y(4260) \rightarrow Z_c \pi$  already noticed, but  $Z_c$  pole still needed Q.Wang, Hanhart, Q.Zhao, PRL111(2013)132002; PLB725(2013)106 triangle singularities relevant for  $P_c$ B FKG. Meißner. W.Wang.Z.Yang.

PRD92(2015)071502; X.-H.Liu.Q.Wang,Q.Zhao, PLB757(2016)231

Schmid theorem:

C. Schmid, Phys. Rev. 154 (1967) 1363

see also, A. V. Anisovich, V. V. Anisovich, Phys. Lett. B 345 (1995) 321

Triangle singularity cannot produce an additional peak in the invariant mass distribution of the elastic channel when neglecting inelasticity



#### Difficulties in interpreting experimental observations

If the observed structure are due to a genuine resonance  $\Rightarrow$  what is its nature? Difficult to answer generally!



- Phenomenological calculations: sometimes model dependence is hard to quantify for a comprehensive review, see H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Phys.Rept.639(2016)1
  - at quark-gluon level: quark model, QCD sum rules
  - at hadronic level: one-boson exchange models
     EFT-based approach: less model dependence, but less predictive power,
     only for near-threshold states, hadronic molecules, long-distance processes
- Lattice calculations: energy levels in finite volume, interpreting the nature is not straightforward

#### Difficulties in interpreting experimental observations

If the observed structure are due to a genuine resonance  $\Rightarrow$  what is its nature? Difficult to answer generally!



 Phenomenological calculations: sometimes model dependence is hard to quantify for a comprehensive review, see H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Phys.Rept.639(2016)1

- at quark-gluon level: quark model, QCD sum rules
- at hadronic level: one-boson exchange models EFT-based approach: less model dependence, but less predictive power, only for near-threshold states, hadronic molecules, long-distance processes
- Lattice calculations: energy levels in finite volume, interpreting the nature is not straightforward

#### Difficulties in interpreting experimental observations

If the observed structure are due to a genuine resonance  $\Rightarrow$  what is its nature? Difficult to answer generally!



- Phenomenological calculations: sometimes model dependence is hard to quantify for a comprehensive review, see H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Phys.Rept.639(2016)1
  - at quark-gluon level: quark model, QCD sum rules
  - at hadronic level: one-boson exchange models EFT-based approach: less model dependence, but less predictive power, only for near-threshold states, hadronic molecules, long-distance processes
- Lattice calculations: energy levels in finite volume, interpreting the nature is not straightforward

- Many models:
  - Image: Im

large coupling to  $D\bar{D}^* \Rightarrow$  a large  $D\bar{D}^*$  component

- tetraquark Maiani et al. (2005); ... generally predicting too many sta
- $\square$  cusp,  $c\bar{c}g, \ldots$

- Many models:
  - hadronic molecule— DD̄\* bound state Törnquist (2003); Voloshin (2004); Braaten (2004); Swanson (2004); ... virtual state Hanhart et al. (2007) various models calculating the mass;
     low-energy EFT based ⇒ long-distance decay processes, focus on DD̄\*
     cc̄ + DD̄\* coupled-channel effects Kalashnikova (2005); Meng, Gao, Chao (2005);
    - Zhang, Meng, Zheng (2009); Li, Chao (2009); Danilkin, Simonov (2010); Zhou, Xiao (2014); ... large coupling to  $D\bar{D}^* \Rightarrow$  a large  $D\bar{D}^*$  component
  - 📧 tetraquark Maiani et al. (2005); ...
    - generally predicting too many states
  - $\square$  cusp,  $c\bar{c}g, \ldots$

- Many models:
  - hadronic molecule—  $D\bar{D}^*$  bound state Törnquist (2003); Voloshin (2004); Braaten (2004); Swanson (2004); ... virtual state Hanhart et al. (2007) various models calculating the mass; low-energy EFT based ⇒ long-distance decay processes, focus on  $D\bar{D}^*$
  - Image coupled-channel effects Kalashnikova (2005); Meng, Gao, Chao (2005); Zhang, Meng, Zheng (2009); Li, Chao (2009); Danilkin, Simonov (2010); Zhou, Xiao (2014); ... large coupling to DD̄<sup>\*</sup> ⇒ a large DD̄<sup>\*</sup> component
  - tetraquark Maiani et al. (2005); ... generally predicting too many states
  - rightarrow cusp,  $c\bar{c}g, \ldots$

# X(3872) (II)

 $X(3872) \rightarrow D^0 \bar{D}^0 \pi^0, X(3872) \rightarrow D^0 \bar{D}^0 \gamma$ Voloshin (2004); Fleming et al. (2007); Braaten, Lu (2007); Hanhart et al. (2007); FKG et al. (2014) ...



- $\Rightarrow$  directly measuring the  $D\bar{D}^*$  component in X(3872)
- $J^{PC} = 1^{++} \Rightarrow S$ -wave coupling , probability of finding  $D\bar{D}^*$  in X, 1-Z, is related to coupling constant

Weinberg, PR137(1965); Baru et al., PLB586(2004); Hyodo, IJMPA28(2013)1330045; ...

see also, e.g., Weinberg's books: QFT Vol.I, Lectures on QM

$$g_{
m NR}^2 pprox (1-Z) rac{2\pi}{\mu^2} \sqrt{2\mu E_B}$$

 $X(3872) \rightarrow D^0 \bar{D}^0 \pi^0, X(3872) \rightarrow D^0 \bar{D}^0 \gamma$ Voloshin (2004); Fleming et al. (2007); Braaten, Lu (2007); Hanhart et al. (2007); FKG et al. (2014) ...



- $\Rightarrow$  directly measuring the  $D\bar{D}^*$  component in X(3872)
- $J^{PC} = 1^{++} \Rightarrow S$ -wave coupling , probability of finding  $D\bar{D}^*$  in X, 1-Z, is related to coupling constant

Weinberg, PR137(1965); Baru et al., PLB586(2004); Hyodo, IJMPA28(2013)1330045; ...

see also, e.g., Weinberg's books: QFT Vol.I, Lectures on QM

$$g_{
m NR}^2 pprox (1-Z) rac{2\pi}{\mu^2} \sqrt{2\mu E_B}$$

# X(3872) (III)

- Processes driven by short-distance  $c\bar{c}$  physics: Examples:
  - ${}^{\scriptstyle \hbox{\tiny IMS}}$  production of X(3872) in B decays, at hadron colliders with large  $p_T$

Braaten et al. (2004,2005,2006,2009); Meng, Gao, Chao (2005); Bignamini et al. (2009); ...

• Often used to blame the  $D\overline{D}^*$  molecular interpretation, e.g.



Esposito et al., PRD92(2015)034028 :

- but deutron and *X* are very different at short distances:
  - deutron: 6 quarks
  - Short distances X: dominantly produced by  $c\bar{c}$  at

- So far, no evidence for  $Z_c(3900)$  in lattice QCD:
  - Image: CLQCD:PRD89(2014)094506 $I = 1 D\bar{D}^*$  weakly repulsive  $\Rightarrow$  no bound state ( $M_{\pi} \ge 300 \text{ MeV}$ )Image: Prelovsek et al.:PRD91(2015)014504"no additional eigenstate" corresponding to  $Z_c(3900)$  ( $M_{\pi} = 266 \text{ MeV}$ ),Image: HALQCD:arXiv:1602.03465virtual state pole with very low masses and deep in the complex planeImage: Laboration of the state of t

 $(M_{\pi} \ge 410 \text{ MeV})$ 

• Are they in conflict with experiments?

#### $Z_c(3900)$ : Interpreting lattice results by Prelovsek et al.



M. Albaladejo, J. Nieves, P. Fernandez-Soler, arXiv:1606.03008

- Model fitted to BESIII data with: (1) resonance, or
   (2) virtual state Albaladejo et al., PLB755(2016)337
- In finite volume (L = 2 fm): consistent with lattice energy levels, but with a pole in continuum!

#### $Z_c(3900)$ : Interpreting lattice results by Prelovsek et al.



M. Albaladejo, J. Nieves, P. Fernandez-Soler, arXiv:1606.03008

 $E_{D^*\bar{D}}^{(1)}$ 

 $E_{D^{*}\bar{D}}^{(0)}$ 

 $E_{J/\psi\pi}^{(1)}$ 

- Model fitted to BESIII data with: (1) resonance, or
   (2) virtual state Albaladejo et al., PLB755(2016)337
- In finite volume (L = 2 fm): consistent with lattice energy levels, but with a pole in continuum!



- The study of exotic hadrons is difficult: nonperturbative QCD, confinement.
  - Why are exotic hadrons so scarce?
  - Searching for and confirming states with exotic quantum numbers
  - Calculating QCD spectrum using lattice simulations
  - For the confirmed states: understanding their structures, why is the spectrum organized as such?
  - $\Rightarrow$  learning about confinement
- lots of progress in recent years, but still a long way to go
  - $\Rightarrow$  more joint efforts needed !



# **Backup slides**

#### HQSS — hadro-charmonia

Heavy quark spin symmetry (HQSS):



• Example: implications for hadro-charmonia Cleven et al., PRD92(2015)014005 If the Y(4260) and Y(4360) are mixed hadro-charmonia with  $h_c$  and  $\psi'$  core





#### Triangle singularity – literature

Very old knowledge from 1960s:

Classical books:

R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, *The Analytic S-Matrix* Cambridge University Press, 1966. 张宗燧, "色散关系引论"两册 (科学出版社, 1980, 1983年出版, 著于1965年).

Recent lecture notes by one of the key players: I. J. R. Aitchison, arXiv:1507.02697 [hep-ph]. Unitarity, Analyticity and Crossing Symmetry in Twoand Three-hadron Final State Interactions.



张宗燧 (1915–1969)

Commun. Theor. Phys. 65 (2016) 593-595

Vol. 65, No. 5, May 1, 2016

How the X(5568) Challenges Our Understanding of QCD<sup>\*</sup>

Feng-Kun Guo (郭奉坤),<sup>1,†</sup> Ulf-G. Meißner,<sup>1,2,3,‡</sup> and Bing-Song Zou (邹冰松)<sup>1,4,§</sup>

- mass too low for X(5568) to be a  $\bar{b}s\bar{u}d$ :  $M \simeq M_{B_s} + 200 \text{ MeV}$ 
  - $\mathbb{S} M_{\pi} \simeq 140 \text{ MeV}$  because pions are pseudo-Goldstone bosons of spontaneous chiral symmetry breaking  $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
  - Sell-Mann–Oakes–Renner:  $M_{\pi}^2 \propto m_q$ ; chiral counting:  $M_{\pi} = \mathcal{O}(p)$
  - For any matter field:  $M_R = \mathcal{O}\left(p^0\right) \gg M_{\pi}$ ; we expect  $M_{\bar{q}q} \sim M_R \gtrsim M_{\sigma}$

 $M_{\bar{b}s\bar{u}d}\gtrsim M_{B_s}+500~{\rm MeV}\sim 5.9~{\rm GeV}$ 

• heavy quark flavor symmetry predicts an isovector  $X_c$ :

$$M_{X_c} = M_{X(5568)} - \bar{M}_{B_s} + \bar{M}_{D_s} + \mathcal{O}\left(\Lambda_{\text{QCD}}^2\left(\frac{1}{m_c} - \frac{1}{m_b}\right)\right) \simeq (2.24 \pm 0.15) \text{ GeV}$$

but in  $D_s\pi$ , only isoscalar  $D_{s0}^*(2317)$  was observed!

BaBar (2003)

Commun. Theor. Phys. 65 (2016) 593-595

Vol. 65, No. 5, May 1, 2016

How the X(5568) Challenges Our Understanding of QCD<sup>\*</sup>

Feng-Kun Guo (郭奉坤),<sup>1,†</sup> Ulf-G. Meißner,<sup>1,2,3,‡</sup> and Bing-Song Zou (邹冰松)<sup>1,4,§</sup>

- mass too low for X(5568) to be a  $\bar{b}s\bar{u}d$ :  $M \simeq M_{B_s} + 200 \text{ MeV}$ 
  - $\begin{tabular}{ll} $\mathbb{I}_{\pi} \simeq 140$ MeV because pions are pseudo-Goldstone bosons of spontaneous chiral symmetry breaking $\mathsf{SU}(2)_L \times \mathsf{SU}(2)_R \to \mathsf{SU}(2)_V$ \end{tabular}$
  - Sell-Mann–Oakes–Renner:  $M_{\pi}^2 \propto m_q$ ; chiral counting:  $M_{\pi} = \mathcal{O}\left(p\right)$
  - For any matter field:  $M_R = \mathcal{O}\left(p^0\right) \gg M_{\pi}$ ; we expect  $M_{\bar{q}q} \sim M_R \gtrsim M_{\sigma}$

 $M_{\bar{b}s\bar{u}d}\gtrsim M_{B_s}+500~{\rm MeV}\sim 5.9~{\rm GeV}$ 

heavy quark flavor symmetry predicts an isovector X<sub>c</sub>:

$$M_{X_c} = M_{X(5568)} - \bar{M}_{B_s} + \bar{M}_{D_s} + \mathcal{O}\left(\Lambda_{\text{QCD}}^2 \left(\frac{1}{m_c} - \frac{1}{m_b}\right)\right) \simeq (2.24 \pm 0.15) \text{ GeV}$$

but in  $D_s\pi$ , only isoscalar  $D^*_{s0}(2317)$  was observed!

BaBar (2003)

#### **Compositeness (I)**

Weinberg, PR137(1965); Baru *et al.*, PLB586(2004); ... see also, e.g., Weinberg's books: QFT Vol.I, Lectures on QM Model-independent result for *S*-wave loosely bound composite states:

Consider a system with Hamiltonian

 $\mathcal{H} = \mathcal{H}_0 + V$ 

 $\mathcal{H}_0$ : free Hamiltonian, V: interaction potential

Compositeness:

the probability of finding the physical state  $|B\rangle$  in the 2-body continuum  $|q\rangle$ 

$$1 - Z = \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \left| \langle \boldsymbol{q} | B \rangle \right|^2$$

- $Z = |\langle B_0 | B \rangle|^2$ ,  $0 \le (1 Z) \le 1$ 
  - $\mathbb{R}$  Z = 0: pure bound (composite) state
  - $\mathbb{S} Z = 1$ : pure elementary state



#### **Compositeness (II)**

Compositeness : 
$$1 - Z = \int \frac{d^3 q}{(2\pi)^3} |\langle q|B \rangle|^2$$
  
Schrödinger equation  
 $(\mathcal{H}_0 + V)|B \rangle = -E_B|B \rangle$   
multiplying by  $\langle q|$  and using  $\mathcal{H}_0|q \rangle = \frac{q^2}{2\mu}|q \rangle$   
 $\langle q|B \rangle = -\frac{\langle q|V|B \rangle}{E_B + q^2/(2\mu)}$ 

• S-wave, small binding energy so that  $R=1/\sqrt{2\mu E_B}\gg r,$  r: range of forces

$$\langle \boldsymbol{q}|V|B\rangle = g_{\mathrm{NR}} \left[1 + \mathcal{O}(r/R)\right]$$

Compositeness:

$$1 - Z = \int \frac{d^3 q}{(2\pi)^3} \frac{g_{\rm NR}^2}{\left[E_B + q^2/(2\mu)\right]^2} \left[1 + \mathcal{O}\left(\frac{r}{R}\right)\right] = \frac{\mu^2 g_{\rm NR}^2}{2\pi\sqrt{2\mu E_B}} \left[1 + \mathcal{O}\left(\frac{r}{R}\right)\right]$$

• Coupling constant measures the compositeness for an *S*-wave bound state with a small binding energy (model-independent)

$$g_{
m NR}^2 pprox (1-Z) rac{2\pi}{\mu^2} \sqrt{2\mu E_B} \le rac{2\pi}{\mu^2} \sqrt{2\mu E_B}$$

• Z can be measured directly from observables, such as scattering length a and effective range  $r_e$   $$\rm Weinberg\ (1965)\ }$ 

$$a = -\frac{2R(1-Z)}{2-Z} \left[ 1 + \mathcal{O}\left(\frac{r}{R}\right) \right], \quad r_e = \frac{RZ}{1-Z} \left[ 1 + \mathcal{O}\left(\frac{r}{R}\right) \right]$$

• Example: deuteron as pn bound state. Exp.:  $E_B = 2.2$  MeV,  $a_{^3S_1} = -5.4$  fm

$$a_{Z=1} = 0 \text{ fm}, \qquad a_{Z=0} = (-4.3 \pm 1.4) \text{ fm}$$