

BESIII

Baryon form factor measurement at BESIII

孟召霞（济南大学）
 Zhaoxia Meng（University of Jinan） on behalf of BESIII Collaboration

第十二届全国粒子物理学术会议安徽合肥2016．8．22－8．26

Outline

- Motivation
- Definition of baryon form factors (FFs)
- BESIII detector
- Status of baryon FFs measurements
-Proton FFs
- Neutron FFs
-Hyperon FFs
- Summary

Motivation

1

Baryons have structure

Understanding baryons' structure helps understand QCD

FFs describe baryons' internal structure

FFs help understand strong interaction

Inputs to QCD models

Outline

- Motivation
- Definition of baryon form factors (FFs)
- Dirac and Pauli FFs, Electromagnetic (EM) FFs, ratio of EM FFs, effective (EF) FFs
- BESIII detector
- Status of baryon FFs measurements
- Proton FFs
- Neutron FFs
- Hyperon FFs
- Summary

Dirac FF and Pauli FF

Elastic scattering:
Annihilation:
Time-like (TL) region, $q^{2}>0$
Space-like (SL) region, $\mathrm{q}^{2}<0$

Baryon vertex: $\quad \Gamma_{\mu}=\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu v} q_{v}}{2 M_{B}} \kappa F_{2}\left(q^{2}\right)$

$$
F_{1}\left(q^{2}\right): \text { Dirac FF, } \quad F_{2}\left(q^{2}\right): \text { Pauli FF }
$$

Dirac FF and Pauli FF

Elastic scattering:

Annihilation:
Time-like (TL) region, $q^{2}>0$

Baryon vertex: $\quad \Gamma_{\mu}=\gamma^{u} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu v} q_{v}}{2 M_{B}} \kappa F_{2}\left(q^{2}\right)$

$$
F_{1}\left(q^{2}\right): \text { Dirac FF, } \quad F_{2}\left(q^{2}\right): \text { Pauli FF }
$$

EM FFs and TL angular distribution

EM FFs:

$$
\left\{G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau \kappa F_{2}\left(q^{2}\right), \tau=\frac{q^{2}}{4 M_{B}^{2}} \quad\right. \text { Electric }
$$

$$
\mathcal{G} G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\kappa F_{2}\left(q^{2}\right)
$$

Magnetic

How to measure them?
 Angular analysis

Ratio of EM FFs and effective FFs

Angular distribution written as function of EM FFs ratio:

$$
\begin{aligned}
& \left.\left.\frac{d \sigma_{b o r n}}{d \Omega}=\frac{\alpha^{2} \beta \xi}{4 q^{2}} \right\rvert\, G_{M}\left(q^{2}\right)\right)\left[\left(1+\cos ^{2} \theta\right)+R_{E M}^{2} \frac{1}{\tau} \sin ^{2} \theta\right] \\
& \text { Ratio of EM FFs: } \quad R_{E M}=\left|G_{E}\left(q^{2}\right) / G_{M}\left(q^{2}\right)\right|
\end{aligned}
$$

Born cross section:

$$
\sigma_{b o r n}=\frac{4 \pi \alpha^{2} \beta \zeta}{3 q^{2}}\left[\left|G_{M}\right|^{2}+\frac{1}{2 \tau}\left|G_{E}\right|^{2}\right]
$$

Assume: $|G|=\left|G_{E}\right|=\left|G_{M}\right|$

```
EF FFs:
```

$$
\left|G\left(q^{2}\right)\right|=\sqrt{\sigma_{\text {born }} /\left[\frac{4 \pi \alpha^{2} \beta \zeta}{3 q^{2}}\left(1+\frac{1}{2 \tau}\right)\right]}
$$

Above baryon threshold: $\zeta=1$

All formula valid for spin $1 / 2$

Outline

- Motivation
- Definition of baryon form factors (FFs)
- BESIII detector
- Status of baryon FFs measurements
- Proton FFs
- Neutron FFs
- Hyperon FFs
- Summary
- Runs started in 2009
- CM energy: $2.0-4.6 \mathrm{GeV}$
- "t-charm factory"
- Peak instantaneous luminosity:
$-1 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (designed)
- Energy spread: $5.16 \times 10^{-4} \mathrm{GeV}$
$-1 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (achieved)

BESIII detector at BEPCII

	MDC	TOF	EMC	MUC
Sub-detectors	Main Drift Chamber	Time of Flight	Electromagnetic Calorimeter	Muon Counter
Resolution	$115 \mu \mathrm{~m}$ (wire), $<5 \%$ (dE/dx)	68ps (Barrel), 100ps (Endcap)	2.3\% (energy)	

Outline

- Motivation
- Definition of baryon form factors (FFs)
- BESIII detector
- Status of baryon FFs measurements
- Proton FFs
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ ppbar process
- ISR (Initial State Radiation) process
- Neutron FFs
- Hyperon FFs
- Summary

Proton FFs in $\mathrm{e}^{+} \mathrm{e}^{-}>$ppbar

Energy scan method

Proton FFs at BESIII in $\mathrm{e}^{+} \mathrm{e}^{-}-$ppbar

Phys. Rev. D 91, 112004 (2015)
Born cross section at 12 CM energies from 2.2324 to 3.671 GeV , integrated luminosity $156.94 \mathrm{pb}^{-1}$, scanned in 2011 and 2012

EF FFs at 12 CM energy points

Proton FFs at BESIII in $\mathrm{e}^{+} \mathrm{e}^{-}-$ppbar

Phys. Rev. D 91, 112004 (2015)
Born cross section at 12 CM energies from 2.2324 to 3.671 GeV , integrated luminosity $156.94 \mathrm{pb}^{-1}$, scanned in 2011 and 2012.

EF FFs at 12 CM energy points

Proton FFs at BESIII in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ ppbar

Phys. Rev. D 91, 112004 (2015)

$R_{\text {EM }}$ at 3 points: $2.2324,2.4$, combined $3.05,3.06$ and 3.08 GeV

- Dots with error bar: data
- Black line: overall fit
- Red line: magnetic FF contribution
- Blue line: electric FF contribution

$\mathrm{E}_{\mathrm{cm}}(\mathrm{GeV})$	$\chi^{2} /$ ndf
2.2324	1.04
2.4	0.74
$3.05,3.06,3.08$	0.61

$R_{E M} s$ are extracted from the fit

Proton FFs at BESIII in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ ppbar

- Inconsistent between Babar and PS170
- BESIII consistent with Babar in the same q^{2} region
- Close to 1

Prospections of proton $\mathrm{FFs}^{\text {in }} \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ ppbar at BESIII

21 energy points between 2-3.08 GeV in 2015, with large statistics.

- More precise measurement
- Aim to measure $R_{E M}$ of 10-15\% with much narrower q^{2}-bins
with much narrower q^{2}-bins

$\mathbf{E}_{\mathrm{cm}}(\mathrm{GeV})$	Lumi. (pb-1)	Purpose
2.2	13.0	Nucleon FFs \& $\mathrm{Y}(2175)$
2.95	15.7	$m_{p \bar{p}}$ step
2.981	15.4	$m_{p \overline{\bar{p}}}$ step, η_{c}
3.0	15.3	$m_{p \overline{\bar{p}}}$ step
3.02	16.6	

- The 2 trips found by Babar can be studied

Proton FFs in ISR process

- Tagged method (preliminary results)
- Untagged method (on going)

Datasets using:

$\mathrm{E}_{\mathrm{cm}}(\mathrm{GeV})$	3.773	4.009	4.230	4.260	4.360	4.420	4.600
Taking time	$2010-2011$	2011	2013	2013	2013	2014	2014
Lumi. $\left(p b^{-1}\right)$	2917.00	481.96	1047.34	825.67	539.84	1028.89	566.93

Proton FFs at BESIII with ISR (Tagged)

Tagged method: γ is detected

- $\mathrm{E}_{\gamma}>25 \mathrm{MeV} \&\left|\cos \theta_{\gamma}\right|<0.8$, in the EMC barrel
- $\mathrm{E}_{\gamma}>50 \mathrm{MeV} \& 0.86<\left|\cos \theta_{\gamma}\right|<$ 0.92 , in the EMC endcap

Angular Distribution (th. -- 1.95)

Angular distribution at ${ }^{\sim} 1.95$

- Fit is good
- Green dashed line: Magnetic FFs contribution
- Violet dashed line: Electric FFs contribution

Proton FFs at BESIII with ISR (Tagged)

Effective Form Factor

- Consistent with Babar and BESIII R scan results

$\mathbf{E}_{\mathrm{cm}}(\mathrm{GeV})$	Stat.	Syst.
$\delta \mathbf{R}_{\mathrm{EM}} / \mathbf{R}_{\mathrm{EM}}$	$16 \%-34 \%$	$5 \%-22 \%$

- Measured in 31 mass intervals
- Consistent with previous results

$\mathrm{E}_{\mathrm{cm}}(\mathrm{GeV})$	Stat.	Syst.
$\delta \mathrm{G}_{\text {Eff }} / \mathrm{G}_{\text {Eff }}$	$5 \%-32 \%$	$2 \%-30 \%$

Neutron FFs at BESIII

- The first results obtained by FENICE 20 years ago
- Confirmed by SND recently in 2014
- Compared to the proton FFs from Babar

Prospects at BESIII: with data scanned in 2015

- First measurement at BESIII
- Between 2 and 3.08 GeV
- High statistics
- Narrow q2-bins ($\sim 100 \mathrm{MeV}$)

Hyperon FFs at BESIII

- Λ and Σ^{0} FFs were obtained by Babar in processes:

$$
e^{+} e^{-} \rightarrow \gamma \Lambda \bar{\Lambda}, \gamma \Lambda \bar{\Sigma}^{0}, \gamma \Sigma^{0} \bar{\Sigma}^{0}
$$

- Preliminary results on \wedge FFs at BESIII

- At 4 energy points: $2.2324,2.4,2.8,3.08 \mathrm{GeV}$ with 2015 scan
- 2.2324 is 1 MeV above Λ threshold

Λ FFs at BESIII

- Results consistent with previous measurements
- With improved precision
- Cross section and EF FFs are measured at threshold
- Helpful in understanding the mechanism of baryon production

Summary

- BESIII already had important results on baryon FFs measurements
- 2012 data scan - proton FFs:
- Born cross section and EF FFs, with uncertainties improved by ~ 30% compared to Babar
- R_{EM} and G_{M}
- Preliminary results of ISR process with tagged method
- 2015 data scan - more baryon FFs:
- Preliminary results on \wedge FFs
- Prospect to improve proton FFs measurements
- Prospect to have first results of neutron FFs at BESIII
- Prospect to have $\Sigma^{ \pm}$and Σ^{0} FFs at one energy

Thank you for your attention!

Back-up

Measurements of baryon FFs

Electromagnetic $\left[G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 M_{B}} F_{2}\left(q^{2}\right) \quad\right.$ Electric FF:

$$
G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)
$$

Magnetic How to measure? « Angular analysis
St:

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}\left[G_{E}^{2}+\frac{\tau}{\varepsilon} G_{M}^{2}\right] \frac{1}{1+\tau}: \begin{aligned}
& -\varepsilon=1 /\left[\begin{array}{l}
\left.1+2(1+\tau) \tan ^{2} \frac{\theta}{2}\right] \\
\end{array}\right]=q^{2} /\left(4 M_{B}^{2}\right)
\end{aligned}
$$

TL:

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \beta \xi}{4 q^{2}}\left[\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}+\left.\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}\right|^{\left[\begin{array}{l}
- \\
1 \\
1 \\
1 \\
-\xi: \text { Coulomb }
\end{array}\right.}\right.
$$ correction

