

Baryon form factor measurement at BESIII

孟召霞(济南大学) Zhaoxia Meng (University of Jinan) on behalf of BESIII Collaboration

第十二届全国粒子物理学术会议

安徽合肥 2016.8.22-8.26

Outline

- Motivation
- **Definition** of baryon form factors (FFs)
- **BESIII** detector
- Status of baryon FFs measurements
 - -Proton FFs
 - -Neutron FFs
 - -Hyperon FFs
- Summary

Motivation

Baryons have structure

Understanding baryons' structure helps understand QCD

FFs describe baryons' internal structure

FFs help understand strong interaction

Inputs to QCD models

Outline

Motivation

- Definition of baryon form factors (FFs)
 - Dirac and Pauli FFs, Electromagnetic (EM) FFs, ratio of EM FFs, effective (EF) FFs
- BESIII detector
- Status of baryon FFs measurements
 - Proton FFs
 - Neutron FFs
 - Hyperon FFs
- Summary

Dirac FF and Pauli FF

Elastic scattering: Space-like (SL) region, q² < 0 Annihilation:

Time-like (TL) region, $q^2 > 0$

Baryon vertex:
$$\Gamma_{\mu} = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_B}\kappa F_2(q^2)$$

$$F_1\!\left(q^2
ight)$$
 : Dirac FF, $F_2\!\left(q^2
ight)$: Pauli FF

Baryon vertex:
$$\Gamma_{\mu} = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_B}\kappa F_2(q^2)$$

$$F_1ig(q^2ig)$$
 : Dirac FF, $F_2ig(q^2ig)$: Pauli FF

EM FFs and TL angular distribution

Angular analysis

function of

 q^2 and θ :

- q²: 4-momentum transferred by the virtual photon
 - θ: polar angle of baryon inCM (center-of-mass system)

Ratio of EM FFs and effective FFs

Angular distribution written as function of EM FFs ratio:

$$\frac{d\sigma_{born}}{d\Omega} = \frac{\alpha^2 \beta \zeta}{4q^2} \left| G_M(q^2) \right| \left[\left(1 + \cos^2 \theta \right) + R_{EM}^2 \frac{1}{\tau} \sin^2 \theta \right]$$

$$R_{EM} = \left| G_E(q^2) \right/ G_M(q^2) \right|$$

Born cross section:

$$\sigma_{born} = \frac{4\pi\alpha^2\beta\zeta}{3q^2} \left[\left| G_M \right|^2 + \frac{1}{2\tau} \left| G_E \right|^2 \right]$$

Assume:
$$|G| = |G_E| = |G_M|$$

EF FFs:

Above baryon

threshold: ζ=1

$$\left|G\left(q^{2}\right)\right| = \sqrt{\sigma_{born}} / \left[\frac{4\pi\alpha^{2}\beta\zeta}{3q^{2}}\left(1 + \frac{1}{2\tau}\right)\right]$$

All formula valid for spin 1/2

Outline

- Motivation
- Definition of baryon form factors (FFs)
- **BESIII** detector
- Status of baryon FFs measurements
 - Proton FFs
 - -Neutron FFs
 - -Hyperon FFs
- Summary

BEPCII

- Bass 2.5m ILSep
- Runs started in 2009
- CM energy:
 2.0 4.6 GeV
- "τ-charm factory"

- Peak instantaneous luminosity:
 - 1×10³³ cm⁻²s⁻¹ (designed)
 - 1×10³³ cm⁻²s⁻¹ (achieved)

Energy spread: 5.16×10⁻⁴ GeV

BESIII detector at BEPCII

	MDC TOF		EMC	MUC	
Sub-detectors	Main Drift Chamber	Time of Flight	Electromagnetic Calorimeter	Muon Counter	
Resolution	115µm(wire), < 5% (dE/dx)	68ps (Barrel), 100ps (Endcap)	2.3% (energy)		

Outline

- Motivation
- Definition of baryon form factors (FFs)
- BESIII detector
- Status of baryon FFs measurements
 - Proton FFs
 - e⁺e⁻→ppbar process
 - ISR (Initial State Radiation) process
 - Neutron FFs
 - Hyperon FFs
- Summary

Proton FFs in $e^+e^- \rightarrow ppbar$

Energy scan method

Proton FFs at BESIII in e⁺e⁻→ppbar

Phys. Rev. D 91, 112004 (2015)

Born cross section at **12** CM energies from 2.2324 to 3.671 GeV, integrated luminosity 156.94 *pb*⁻¹, scanned in 2011 and 2012

EF FFs at **12** CM energy points

Proton FFs at BESIII in e⁺e⁻→ppbar

THE SITY OF THE STATE

Phys. Rev. D 91, 112004 (2015)

Born cross section at **12** CM energies from 2.2324 to 3.671 GeV, integrated luminosity 156.94 *pb*⁻¹, scanned in 2011 and 2012.

EF FFs at **12** CM energy points

Proton FFs at BESIII in e⁺e⁻→ppbar

Phys. Rev. D 91, 112004 (2015)

R_{EM} at **3** points: 2.2324, 2.4, combined 3.05, 3.06 and 3.08 GeV

- Dots with error bar: data
- Black line: overall fit
- Red line: magnetic FF contribution
- Blue line: electric FF contribution

E _{cm} (GeV)	χ²/ndf		
2.2324	1.04		
2.4	0.74		
3.05, 3.06, 3.08	0.61		

 R_{EM} s are extracted from the fit

Proton FFs at BESIII in $e^+e^- \rightarrow ppbar$

- Inconsistent between Babar and PS170
- BESIII consistent with Babar in the same q² region
- Close to 1

Prospections of proton FFs in $e^+e^- \rightarrow ppbar$ at BESIII

21 energy points between 2-3.08 GeV in 2015, with large statistics

- More precise measurement
- Aim to measure R_{EM} of 10-15% with much narrower q²-bins

E _{cm} (GeV)	Lumi. (pb-1)	Purpose
2.2	13.0	Nucleon FFs & Y(2175)
2.95	15.7	$m_{p\overline{p}}$ step
2.981	15.4	$m_{p\overline{p}}$ step, η_c
3.0	15.3	m - step
3.02	16.6	pp II

 The 2 trips found by Babar can be studied

Proton FFs in ISR process

- Tagged method (preliminary results)
- Untagged method (on going)

Datasets using:

E _{cm} (GeV)	3.773	4.009	4.230	4.260	4.360	4.420	4.600
Taking time	2010-2011	2011	2013	2013	2013	2014	2014
Lumi. (<i>pb</i> -1)	2917.00	481.96	1047.34	825.67	539.84	1028.89	566.93

Proton FFs at BESIII with ISR (Tagged)

 γ_{ISR} Angular Distribution

Angular Distribution (th. -- 1.95)

Tagged method: γ is detected

- $E_{\gamma} > 25 \text{ MeV } \& |\cos\theta_{\gamma}| < 0.8$, in the EMC barrel
- $E_{\gamma} > 50 \text{ MeV } \& 0.86 < |\cos\theta_{\gamma}| < 0.92$, in the EMC endcap

Angular distribution at ~1.95

- Fit is good
- Green dashed line: Magnetic
 FFs contribution
- Violet dashed line: Electric FFs contribution

Proton FFs at BESIII with ISR (Tagged)

Effective Form Factor

 Consistent with Babar and BESIII R scan results

- Measured in **31** mass intervals
- **Consistent** with previous results

E _{cm} (GeV)	Stat.	Syst.	E _{cm} (GeV)	Stat.	Syst.
δR _{EM} /R _{EM}	16% - 34%	5% - 22%	δG _{eff} /G _{eff}	5% - 32%	2% - 30%

Neutron FFs at BESIII

- The first results obtained by FENICE 20 years ago
- Confirmed by SND recently in 2014
- Compared to the proton FFs from Babar
 - Similar distributions of proton and neutron

Prospects at BESIII: with data scanned in 2015

- First measurement at BESIII
- Between 2 and 3.08 GeV
- High statistics
- Narrow q²-bins (~ 100 MeV)

Hyperon FFs at BESIII

• Preliminary results on Λ FFs at BESIII

- At 4 energy points: 2.2324, 2.4, 2.8, 3.08 GeV with 2015 scan
- 2.2324 is 1 MeV above Λ threshold

Λ FFs at BESIII

- Results consistent with previous measurements
- With improved precision
- Cross section and EF FFs are measured at threshold
 - Helpful in understanding the mechanism of baryon production

Summary

- BESIII already had important results on baryon FFs measurements
- 2012 data scan proton FFs:
 - Born cross section and EF FFs, with uncertainties improved by ~ 30% compared to Babar
 - $\rm R_{EM}$ and $\rm G_{M}$
 - Preliminary results of ISR process with tagged method
- 2015 data scan more baryon FFs:
 - Preliminary results on Λ FFs
 - Prospect to improve proton FFs measurements
 - Prospect to have first results of neutron FFs at BESIII
 - Prospect to have Σ^{\pm} and Σ^{0} FFs at one energy

Thank you for your attention!

Back-up

Measurements of baryon FFs

Electromagnetic
FFs:
$$G_{E}(q^{2}) = F_{1}(q^{2}) + \frac{q^{2}}{4M_{B}}F_{2}(q^{2})$$
Electric
$$G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2})$$
Magnetic

How to measure? Angular analysis
SL:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[G_E^2 + \frac{\tau}{\varepsilon}G_M^2\right] \frac{1}{1+\tau} \begin{bmatrix} -\varepsilon = 1/\left[1+2(1+\tau)\tan^2\frac{\theta}{2}\right] \\ -\tau = q^2/(4M_B^2) \end{bmatrix}$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta \xi}{4q^2} \left[\frac{1}{\tau} \sin^2 \theta \left| G_E \right|^2 + \left(1 + \cos^2 \theta \right) \left| G_M \right|^2 \right] \begin{bmatrix} -\beta = \sqrt{1 - 1/\tau} \\ -\xi : \text{Coulomb correction} \end{bmatrix}$$