Twist-3 T-odd fragmentation functions G^{\perp} and \tilde{G}^{\perp} in a spectator model

Yongliang Yang

Department of Physics, Southeast University Nanjing, China
$>$ Formalism
$>$ Parameterization and a spectator model
$>$ The calculation of G^{\perp} and \tilde{G}^{\perp}
$>$ The numerical calculation
$>$ Summary

Formalism

- Semi-inclusive DIS by lepton beam off nucleon target:

$$
l(\ell)+N(P) \rightarrow l^{\prime}\left(\ell^{\prime}\right)+h\left(P_{h}\right)+X\left(P_{X}\right)
$$

Formalism

$\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2} y}{8 z Q^{4}} 2 M W^{\mu \nu} L_{\mu \nu}$
D. Boer et al., Nucl. Phys. B 667, 201 (2003)

Parameterization

The $\mathrm{q}-\mathrm{q}$ fragmentation correlation function

$$
\begin{aligned}
\Delta_{i j}\left(z, k_{T}\right)= & \left.\frac{1}{2 z} \sum_{X} \int \frac{d \xi^{+} d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle 0| \mathcal{U}_{(+\infty, \xi)}^{n_{+}} \psi_{i}(\xi)|h, X\rangle\langle h, X| \bar{\psi}_{j}(0) \mathcal{U}_{(0,+\infty)}^{n_{+}}|0\rangle\right|_{\xi-=} \\
\Delta^{[-]}\left(z, k_{T}\right) \equiv & \int d k^{+} \Delta^{[-]}\left(P_{h}, k ; n_{+}\right) \\
= & z\left\{D_{1} \not k_{-}+\mathrm{i} H_{1}^{\perp} \frac{\left[\not \psi_{T}, \not h_{-}\right]}{2 M_{h}}\right\} \\
& +\frac{z M_{h}}{P_{h}^{-}}\left\{E+D^{\perp} \frac{\not{ }_{T}}{M_{h}}+\mathrm{i} H \frac{\left[h_{-}, \not h_{+}\right]}{2}+G^{\perp} \gamma_{5} \frac{\epsilon_{T}^{\rho \sigma} \gamma_{\rho} k_{T \sigma}}{M_{h}}\right\} .
\end{aligned}
$$

Parameterization

The $q-g-q$ fragmentation correlation function

$$
\begin{aligned}
\tilde{\Delta}_{A}^{\alpha}\left(z, k_{T}\right) & =\oint_{X} \frac{1}{2 z} \int \frac{d \xi^{+} d^{2} \xi_{T}}{(2 \pi)^{3}} \int e^{i k \cdot \xi}\langle 0| \int_{ \pm \infty^{+}}^{\xi^{\prime}} d \eta^{+} \mathcal{U}_{\left(\infty^{+}, \eta^{+}\right)}^{\xi_{T}} \\
& \times\left. g F_{\perp}^{-\alpha}(\eta) \mathcal{U}_{\left(\eta^{+}, \xi^{+}\right)}^{\boldsymbol{\xi}_{T}} \psi(\xi)\left|P_{h} ; X\right\rangle\left\langle P_{h} ; X\right| \bar{\psi}(0) \mathcal{U}_{\left(0^{+}, \infty^{+}\right)}^{0_{T}} \mathcal{U}_{\left(0_{T}, \boldsymbol{\xi}_{T}\right)}^{\infty^{+}}|0\rangle\right|_{\eta^{+}=\xi^{+}=0}
\end{aligned}
$$

$$
\tilde{\Delta}_{A}^{\alpha}\left(z, k_{T}\right)=\frac{M_{h}}{2 z}\left\{\left(\tilde{D}^{\perp}-i \tilde{G}^{\perp}\right) \frac{k_{T \rho}}{M_{h}}\left(g_{T}^{\alpha \rho}+i \epsilon_{T}^{\alpha \rho} \gamma_{5}\right)\right.
$$

$$
\left.+(\tilde{H}+i \tilde{E}) i \gamma_{T}^{\alpha}+\ldots\left(g_{T}^{\alpha \rho}-i \epsilon_{T}^{\alpha \rho} \gamma_{5}\right)\right\} \frac{\not \chi_{-}}{2}
$$

A. Bacchetta et al., JHEP0702, 093 (2007)

The spectator model

- For the fragmentation correlator $q \rightarrow \pi X$

- The assumptions:
\square Hadron-quark vertex $\left\langle P_{n} ; X\right| \bar{\psi}(0)|0\rangle \Longrightarrow \bar{U}\left(P_{X}\right)\left(i i_{5}\right) \frac{i(k+m)}{k^{2}-m^{2}}$
\square The pion-quark vertex is $g_{h q} \gamma_{5}$
- Assume coupling to be point-like
- The mass of spectator is not equal to parent quark
D. Amrath et al, Phys. Rev. D 71, 114018 (2005)
R. Jakob et al., Nucl. Phys. A 626, 937(1997)

The calculation of G^{\perp}

$$
\frac{1}{P_{h} \epsilon_{T}^{a^{\beta} k_{T} G^{\perp}}\left(z, k_{T}^{2}\right)=\frac{1}{2} \mathrm{Tr}\left[\Delta\left(z, k_{r}\right) \gamma^{\alpha} \gamma_{\gamma]}\right]}
$$

- Single gluon-loop diagrams corrections to the fragmentation of a quark into a pion

(a)

+ H.c.

The calculation of G^{\perp}

- The expression for each diagram are as follows:

$$
\begin{aligned}
\Delta_{(a)}\left(z, k_{T}\right)= & i \frac{4 C_{F} \alpha_{S}}{2(2 \pi)^{2}(1-z) P_{h}^{-}} \frac{(k k+m)}{\left(k^{2}-m^{2}\right)^{3}} g_{q h} \gamma_{5}\left(k k-\not P_{h}+m_{s}\right) g_{q h} \gamma_{5}(k k+m) \\
& \times \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\gamma^{\mu}(k k-l+m) \gamma_{\mu}(k k+m)}{\left((k-l)^{2}-m^{2}+i \varepsilon\right)\left(l^{2}+i \varepsilon\right)}
\end{aligned}
$$

$$
\Delta_{(b)}\left(z, k_{T}\right)=i \frac{4 C_{F} \alpha_{s}}{2(2 \pi)^{2}(1-z) P_{h}^{-}} \frac{(k k+m)}{\left(k^{2}-m^{2}\right)^{2}} g_{q h} \gamma_{5}\left(k k-\not P_{h}+m_{s}\right)
$$

$$
\times \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\gamma^{\mu}\left(k k-\not p_{h}-l+m_{s}\right) g_{q h} \gamma_{5}(k-l+m) \gamma_{\mu}((k+m)}{\left(\left(k-P_{h}-l\right)^{2}-m_{s}^{2}+i \varepsilon\right)\left((k-l)^{2}-m^{2}+i \varepsilon\right)\left(l^{2}+i \varepsilon\right)},
$$

$$
\Delta_{(c)}\left(z, k_{T}\right)=i \frac{4 C_{F} \alpha_{s}}{2(2 \pi)^{2}(1-z) P_{h}^{-}} \frac{(k+m)}{k^{2}-m^{2}} g_{q h} \gamma_{5}\left(k-\not P_{h}+m_{s}\right) g_{q h} \gamma_{5}(k k+m)
$$

$$
\times \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\gamma^{+}(k-l+m)}{\left((k-l)^{2}-m^{2}+i \varepsilon\right)\left(-l^{-} \pm i \varepsilon\right)\left(l^{2}+i \varepsilon\right)}
$$

$$
\Delta_{(d)}\left(z, k_{T}\right)=i \frac{4 C_{F} \alpha_{s}}{2(2 \pi)^{2}(1-z) P_{h}^{-}} \frac{(k+m)}{k^{2}-m^{2}} g_{q h} \gamma_{5}\left(k-\not P_{h}+m_{s}\right)
$$

$$
\times \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\gamma^{+}\left(\not k-\not P_{h}-l+m_{s}\right) g_{q h} \gamma_{5}(k-l+m)}{\left(\left(k-P_{h}-l\right)^{2}-m_{s}^{2}+i \varepsilon\right)\left((k-l)^{2}-m^{2}+i \varepsilon\right)\left(-l^{-} \pm i \varepsilon\right)\left(l^{2}+i \varepsilon\right)} .
$$

The calculation of G^{\perp}

- Using the Cutkosky cut rules

$$
\frac{1}{l^{2}+i \varepsilon} \rightarrow-2 \pi i \delta\left(l^{2}\right), \quad \frac{1}{(k-l)^{2}+i \varepsilon} \rightarrow-2 \pi i \delta\left((k-l)^{2}\right)
$$

- Integrate loop momentum l
$G^{\perp}\left(z, k_{T}^{2}\right)=\frac{2 C_{F} \alpha_{s} g_{q h}^{2}}{(2 \pi)^{4}(1-z)} \frac{1}{\left(k^{2}-m^{2}\right)}\left(G^{\perp}{ }_{(c)}\left(z, k_{T}^{2}\right)+G^{\perp}{ }_{(d)}\left(z, k_{T}^{2}\right)\right)$
$G^{\perp}{ }_{(c)}\left(z, k_{T}^{2}\right)=2 z I_{3} k^{-}+2 z I_{1}$,
$G^{\perp}{ }_{(d)}\left(z, k_{T}^{2}\right)=2 z I_{1}+2\left(k^{2}+m^{2}\right) \mathcal{C}+2\left(k^{2}+m\left(m-2 m_{s}\right)\right) \mathcal{D}+2(1-z) \mathcal{E} P_{h}^{-}$
- The result of G^{\perp}

$$
\begin{aligned}
G^{\perp}\left(z, k_{T}^{2}\right) & =\frac{2 C_{F} \alpha_{s} g_{q h}^{2}}{(2 \pi)^{4}(1-z)} \frac{1}{\left(k^{2}-m^{2}\right)}\left\{2 z I_{1}+2\left(k^{2}+m^{2}\right) \mathcal{C}+2\left(k^{2}+m\left(m-2 m_{s}\right)\right) \mathcal{D}\right. \\
& \left.+\frac{(1-z)}{z k_{T}^{2}}\left(\lambda\left(m_{h}, m_{s}\right) I_{2}+\left((1-2 z) k^{2}+m_{h}^{2}-m_{s}^{2}\right) I_{34}\right)+2 z I_{34} k^{-}\right\} .
\end{aligned}
$$

The calculation of \widetilde{G}^{\perp}

$\frac{z}{2} \operatorname{Tr}\left[\tilde{\Delta}_{A \rho}\left(z, k_{T}\right)\left(g_{T}^{\alpha \rho}-i \epsilon_{T}^{\alpha \rho} \gamma_{5}\right) \gamma^{-}\right]=k_{T}^{\alpha}\left(\tilde{D}^{\perp}\left(z, k_{T}^{2}\right)-i \tilde{G}\left(z, k_{T}^{2}\right)\right)$
$\tilde{\Delta}_{A}^{\alpha}\left(z, k_{T}\right)=i \frac{C_{F} \alpha_{s}}{2(2 \pi)^{2}(1-z) P_{h}^{-}} \frac{1}{k^{2}-m^{2}}$
$\int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\left(l^{-} g_{T}^{\alpha \mu}-l_{T}^{\alpha} g^{-\mu}\right)(\not \hbar-l+m) g_{q h} \gamma_{5}\left(\not \nmid-\not P_{h}-l+m_{s}\right) \gamma_{\mu}\left(\not \not k-P_{h}+m_{s}\right) g_{q h} \gamma_{5}(\not \not k+m)}{\left(-l^{-} \pm i \varepsilon\right)\left((k-l)^{2}-m^{2}-i \varepsilon\right)\left(\left(k-P_{h}-l\right)^{2}-m_{s}^{2}-i \varepsilon\right)\left(l^{2}-i \varepsilon\right)}$

The calculation of \widetilde{G}^{\perp}

- We also apply cut rules to calculate \tilde{G}^{\perp}, the result is led to

$$
\begin{aligned}
\tilde{G}^{\perp}\left(z, k_{T}^{2}\right) & =-\frac{C_{F} \alpha_{s} g_{q h}^{2}}{(2 \pi)^{4}(1-z)} \frac{1}{\left(k^{2}-m^{2}\right)}\left\{((m - m _ { s }) ^ { 2 } - m _ { h } ^ { 2 }) \left[z \mathcal{A}+z \mathcal{B}-2 I_{2}\right.\right. \\
& \left.+\left(2-\frac{2}{z}\right) \mathcal{C}\right]+4 z\left(m^{2} \mathcal{A}+m\left(m-m_{s}\right) \mathcal{B}\right) \\
& \left.+\left(k^{2}-m^{2}\right)\left[(z-1) \mathcal{C}-z I_{2}\right]-z I_{1}\right\},
\end{aligned}
$$

The calculation of \tilde{G}^{\perp}

- These functions originate from the following integrations:

$$
\begin{aligned}
& \int d^{4} l \frac{l^{\mu} \delta\left(l^{2}\right) \delta\left((k-l)^{2}-m^{2}\right)}{\left(k-P_{h}-l\right)^{2}-m_{s}^{2}}=\mathcal{A} k^{\mu}+\mathcal{B} P_{h}^{\mu} \\
& \int d^{4} l \frac{l^{\mu} \delta\left(l^{2}\right) \delta\left((k-l)^{2}-m^{2}\right)}{\left(\left(k-P_{h}-l\right)^{2}-m_{s}^{2}\right)\left(-l \cdot n_{+}+i \epsilon\right)}=\mathcal{C} k^{\mu}+\mathcal{D} P_{h}^{\mu}+\mathcal{E} n_{+}^{\mu} \\
& \mathcal{A}=\frac{I_{1}}{\lambda\left(m_{h}, m_{s}\right)}\left(2 k^{2}\left(k^{2}-m_{s}^{2}-m_{h}^{2}\right) \frac{I_{2}}{\pi}+\left(k^{2}+m_{h}^{2}-m_{s}^{2}\right)\right) \\
& \mathcal{B}=-\frac{2 k^{2}}{\lambda\left(m_{h}, m_{s}\right)} I_{1}\left(1+\frac{k^{2}+m_{s}^{2}-m_{h}^{2}}{\pi} I_{2}\right), \\
& \mathcal{C}=\frac{I_{34} k^{-}}{2 k_{T}^{2}}+\frac{1}{2 z k_{T}^{2}}\left(-z k^{2}+(2-z) m_{h}^{2}+z m_{s}^{2}\right) I_{2}, \\
& \mathcal{D}=\frac{-I_{34} k^{-}}{2 z k_{T}^{2}}-\frac{1}{2 z k_{T}^{2}}\left((1-2 z) k^{2}+m_{h}^{2}-m_{s}^{2}\right) I_{2}, \\
& \mathcal{E}=\frac{\lambda\left(m_{h}, m_{s}\right)}{4 z P_{h}^{-} k_{T}^{2}} I_{2}-\frac{1}{4 z^{2} k_{T}^{2}}\left((1-2 z) k^{2}+m_{h}^{2}-m_{s}^{2}\right) I_{34}+\frac{k^{2}-m^{2}}{2} I_{4}
\end{aligned}
$$

- The fragmentation process : $u \rightarrow \pi^{+}$
$G^{\perp(1 / 2)}(z)=\int d^{2} \boldsymbol{K}_{T} \frac{\left|\boldsymbol{k}_{T}\right|}{2 m_{h}} G^{\perp}\left(z, k_{T}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \frac{\left|\boldsymbol{k}_{T}\right|}{2 m_{h}} G^{\perp}\left(z, k_{T}^{2}\right)$
$\tilde{G}^{\perp(1 / 2)}(z)=\int d^{2} \boldsymbol{K}_{T} \frac{\left|\boldsymbol{k}_{T}\right|}{2 m_{h}} \tilde{G}^{\perp}\left(z, k_{T}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \frac{\left|\boldsymbol{k}_{T}\right|}{2 m_{h}} \tilde{G}^{\perp}\left(z, k_{T}^{2}\right)$
$H_{1}^{\perp(1 / 2)}(z)=\pi z^{2} \int_{0}^{\infty} d k_{T}^{2} \frac{\left|k_{T}\right|}{2 M_{h}} H_{1}^{\perp}\left(z, k_{T}^{2}\right)$
- The relation

$\frac{G^{\perp}}{z}=\frac{\tilde{G}^{\perp}}{z}+\frac{m}{M_{h}} H_{1}^{\perp}$
L. P. Gamberg et al., Phys. Rev. D 68, 051501 (2003)
A. Bacchetta et al., Phys. Lett. B 659, 234 (2008)
Z. Lu and I. Schmidt, Phys. Lett. B 747, 357 (2015)

The numerical result

- We adopt a Gaussian form factor for the coupling

$$
g_{q h} \rightarrow g_{q h} \frac{e^{-\frac{k^{2}}{\Lambda^{2}}}}{z} . \quad \Lambda^{2}=\lambda^{2} z^{\alpha}(1-z)^{\beta}
$$

- The value of the parameters in this model

$$
\alpha_{s}=0.2, \quad m_{h}=m_{\pi}=0.135 \mathrm{GeV}
$$

$\lambda=2.18 \mathrm{GeV}, \alpha=0.5$ (fixed), $\beta=0$ (fixed),
$g_{q h}=g_{q \pi}=5.09, m=0.3 \mathrm{GeV}$ (fixed), $m_{s}=0.53 \mathrm{GeV}$:

The numerical result

- The collinear function vs z

- The dashed and solid lines represent $G^{\perp 1 / 2}(z)$ and $\tilde{G}^{\perp 1 / 2}(z)$ for the case $u \rightarrow \pi^{+}$. We find that their magnitudes are both sizable, although the size of \tilde{G}^{\perp} is smaller than that of G^{\perp}.
- The twist-3 T-odd fragmentation function G^{\perp} and \tilde{G}^{\perp} were calculation in the spectator model.
- The result is free of light-cone divergence, and find that the relation holds approximately in the model.
- Our result implies that \tilde{G}^{\perp} may provide considerable contributions to the longitudinal beam or target SSAs at the twist-3 level.

Thanks for your attention!

$$
\begin{aligned}
& F_{L U}^{\sin \phi_{h}}=\frac{2 M}{Q} \mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}}{M_{h}}\left(x e H_{1}^{\perp}+\frac{M_{h}}{M} f_{1} \frac{\tilde{G}^{\perp}}{z}\right)+\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M}\left(x g^{\perp} D_{1}+\frac{M_{h}}{M} h_{1}^{\perp} \frac{\tilde{E}}{z}\right)\right], \\
& F_{U L}^{\sin \phi_{h}}=\frac{2 M}{Q} \mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}}{M_{h}}\left(x h_{L} H_{1}^{\perp}+\frac{M_{h}}{M} g_{1 L} \frac{\tilde{G}^{\perp}}{z}\right)+\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M}\left(x f_{L}^{\perp} D_{1}-\frac{M_{h}}{M} h_{1 L}^{\perp} \frac{\tilde{H}}{z}\right)\right]
\end{aligned}
$$

$$
\frac{d \sigma}{d x d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=
$$

$$
\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right.
$$

$$
+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}
$$

$$
+S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]
$$

