Baryon-Strangeness Correlations in Au+Au Collisions at RHIC BES energies from UrQMD Model



Zhenzhen Yang (杨贞贞) CCNU (华中师范大学)

第十二届全国粒子物理学术会议 中国科学技术大学 安徽,合肥 8.22-26,2016



- Motivation
- Analysis Details
  - Mixed-cumulant ratios calculation
     Results from HRG model and LQCD
- Results From UrQMD Model
- > Summary



### Motivation



➢ Fluctuations and correlations of conserved charges can be applied to search for the QCD critical point in the QCD phase diagrams.

- >  $B=1/3\Delta u+1/3\Delta d+1/3\Delta s$ ,  $Q=2/3\Delta u-1/3\Delta d-1/3\Delta s$ ,  $S=-\Delta s$ .
- ➤ UrQMD model may provide a baseline for the experimental measure.



> Pressure: 
$$\frac{P}{T^4} = \frac{1}{VT^3} \ln Z(T, \mu_B, \mu_Q, \mu_S)$$

$$\succ \text{Susceptibility:} \quad \chi_{mn}^{XY}(T, \vec{\mu}) = \frac{\partial^{(m+n)}[P/T^4]}{\partial(\mu_X/T)^m \partial(\mu_Y/T)^n} \Big| \vec{\mu} = 0$$
  
where X, Y = B, Q, S,  $\chi_{0n}^{XY} = \chi_n^Y$  and  $\chi_{m0}^{XY} = \chi_m^X$ .

> Mixed-cumulants of the conserved quantities :

$$C_{mn}^{XY} = VT^3 \chi_{mn}^{XY} (T, \vec{\mu}).$$

Reference : Phys. Rev. Lett. 111, 082301 (2013).



Reference : Phys. Rev. Lett. 111, 082301 (2013).



▶ In order to cancel volume dependence.

> In order to make the ratios unity in the QGP phase ( $B_s = -1/3S_s$ ).

#### 8/25/2016



### Mixed-Cumulant Ratios Calculation

- ➤ The joint cumulants of random variables,  $X_1, X_2, ..., X_n$  (n≥2):  $C(X_1, X_2 \cdots X_n) = \sum_{\pi} (|\pi| - 1)! (-1)^{|\pi| - 1} \prod_{B \in \pi} E (\prod_{i \in B} X_i).$
- ➤ The mixed-cumulant ratios of the random variables B,S are:

$$\begin{split} R_{11}^{BS} &= -3 \frac{C_{11}^{BS}}{C_2^S} = -3 \frac{C(B,S)}{C(S,S)} = -3 \frac{\langle \delta B \delta S \rangle}{\langle (\delta S)^2 \rangle} = -3 \frac{\langle B S \rangle - \langle B \rangle \langle S \rangle}{\langle S^2 \rangle - \langle S \rangle^2} \,. \\ R_{13}^{BS} &= -3 \frac{C_{13}^{BS}}{C_4^S} = -3 \frac{C(B,S,S,S)}{C(S,S,S,S)} = -3 \frac{\langle \delta B (\delta S)^3 \rangle - 3 \langle \delta B \delta S \rangle \langle (\delta S)^2 \rangle}{\langle (\delta S)^4 \rangle - 3 \langle (\delta S)^2 \rangle^2} \,. \\ R_{22}^{BS} &= 9 \frac{C_{22}^{BS}}{C_4^S} = 9 \frac{C(B,B,S,S)}{C(S,S,S,S)} = 9 \frac{\langle (\delta B)^2 (\delta S)^2 \rangle - 2 \langle \delta B \delta S \rangle^2 - \langle (\delta B)^2 \rangle \langle (\delta S)^2 \rangle}{\langle (\delta S)^4 \rangle - 3 \langle (\delta S)^2 \rangle^2} \,. \\ R_{31}^{BS} &= -27 \frac{C_{31}^{BS}}{C_4^S} = -27 \frac{C(B,B,B,S,S)}{C(S,S,S,S)} = -27 \frac{\langle (\delta B)^3 \delta S \rangle - 3 \langle \delta B \delta S \rangle \langle (\delta B)^2 \rangle}{\langle (\delta S)^4 \rangle - 3 \langle (\delta S)^2 \rangle^2} \,. \end{split}$$



### Error Calculation

$$\begin{split} f_{m,n} &= \left\langle B^{m}S^{n} \right\rangle, \\ F_{m,n} &= \left\langle \left( \delta B \right)^{m} \left( \delta S \right)^{n} \right\rangle = \frac{\partial F_{m,n}}{\partial f_{i,j}} f_{i,j} \\ &= \sum_{i=0}^{n} \sum_{j=0}^{n} C_{m}^{i}C_{n}^{j}(-1)^{m+n-i-j} f_{1,0}^{m-i} f_{0,1}^{n-j} f_{i,j}. \end{split} \\ \begin{array}{l} \text{General Error propagation formula :} \\ &\mathbb{V}(\phi) = \sum_{i=1, j=1}^{n} \frac{\partial \phi(X_{1}, \cdots, X_{n})}{\partial X_{i}} \frac{\partial \phi(X_{1}, \cdots, X_{n})}{\partial X_{j}} Cov(X_{j}, X_{j}), \\ \text{The covariance of multivariate moments :} \\ &Cov(f_{i,j}, f_{k,h}) = \frac{1}{N} \left( f_{i+k,j+h} - f_{i,j}f_{k,h} \right). \end{split} \\ \\ &\mathbb{R}_{11}^{BS} = -3 \frac{C_{11}^{BS}}{C_{2}^{S}} = -3 \frac{F_{1,1}}{F_{0,2}} = -3 \frac{f_{1,1} - f_{1,0}f_{0,1}}{f_{0,2} - f_{0,1}^{2}} \\ &\frac{\partial R_{11}^{BS}}{\partial f_{i,j}} = \frac{\partial R_{11}^{BS}}{\partial F_{1,1}} \frac{\partial F_{1,1}}{\partial f_{i,j}} + \frac{\partial R_{11}^{BS}}{\partial F_{0,2}} \frac{\partial F_{0,2}}{\partial f_{i,j}} = -\frac{3}{C_{02}^{S}} \frac{\partial F_{1,1}}{\partial f_{i,j}} + \frac{3C_{11}^{BS}}{C_{02}^{S}} \frac{\partial F_{0,2}}{\partial f_{i,j}} \\ &Error(R_{11}^{BS}) = \sqrt{V(R_{11}^{BS})} = \sum_{i,k=0}^{1} \sum_{j,k=0}^{2} \frac{\partial R_{11}^{BS}}{\partial f_{i,j}} \frac{\partial R_{11}^{BS}}{\partial f_{k,h}} Cov(f_{i,j}, f_{k,h}). \end{split}$$



Analysis Details

| $\sqrt{s_{NN}}(GeV)$ | 7.7  | 11.5 | 19.6 | 27 | 39  | 62.4 | 200 |
|----------------------|------|------|------|----|-----|------|-----|
| Statistics(million)  | 72.5 | 105  | 106  | 81 | 133 | 38   | 56  |

- UrQMD (Ultra Relativistic Quantum Molecular Dynamics) model is a microscopic transport model.
- > For centrality divided, charge particles  $(0.5 < |\eta| < 1.0)$  is used.
- ➢ For analysis method,

➢ The particle multiplicities event-by-event.
➢ The weighted mean values (<B> 、 <S> 、 <B<sup>m</sup>S<sup>n</sup> > ).
➢ Observables:  $C_{mn}^{BS} \left( C_{11}^{BS} , C_{13}^{BS} , C_{22}^{BS} , C_{31}^{BS} , C_{2}^{S} , C_{4}^{S} \right)$   $R_{mn}^{BS} \left( R_{11}^{BS} , R_{22}^{BS} , R_{13}^{BS} , R_{31}^{BS} \right)$ 

Reference:

Ji Xu, Shili Yu, Feng Liu, and Xiaofeng Luo, Phys. Rev. C.94, 024901(2016).

8/25/2016



### Particle Details

| Particle                  | Component | Mass<br>(GeV/c <sup>2</sup> ) | PID  | Baryon<br>Number | Strangeness |
|---------------------------|-----------|-------------------------------|------|------------------|-------------|
| proton                    | uud       | 0.938                         | 2212 | 1                | 0           |
| neutron                   | udd       | 0.939                         | 2112 | 1                | 0           |
| $\mathbf{K}^+$            | us        | 0.493                         | 321  | 0                | 1           |
| $\mathrm{K}^{\mathrm{0}}$ | ds        | 0.497                         | 311  | 0                | 1           |
| Λ                         | uds       | 1.115                         | 3122 | 1                | -1          |
| $\Sigma^{-}$              | dds       | 1.197                         | 3112 | 1                | -1          |
| $\Sigma^0$                | uds       | 1.192                         | 3212 | 1                | -1          |
| $\Sigma^+$                | uus       | 1.189                         | 3222 | 1                | -1          |
| ≡-                        | dss       | 1.321                         | 3312 | 1                | -2          |
| $\equiv^0$                | uss       | 1.314                         | 3322 | 1                | -2          |
| $\Omega^{-}$              | SSS       | 1.672                         | 3334 | 1                | -3          |

→ For particle choose: p, n, K<sup>+</sup>, K<sup>0</sup>, Λ, Σ<sup>-</sup>, Σ<sup>0</sup>, Σ<sup>+</sup>, ≡<sup>-</sup>, ≡<sup>0</sup>, Ω<sup>-</sup> and corresponding anti-particles ( $|\eta| < 0.5$ ) are included.





➢ For uncorrelated hadron gas:

$$R_{11}^{BS} = -3 \frac{\sum_{k} \sigma_{k}^{2} B_{k} S_{k}}{\sum_{k} \sigma_{k}^{2} S_{k}^{2}} \approx -3 \frac{\sum_{k} \langle n_{k} \rangle B_{k} S_{k}}{\sum_{k} \langle n_{k} \rangle S_{k}^{2}}$$

- At low μ<sub>B</sub>, C<sub>BS</sub> is smaller than unity.
   As μ<sub>B</sub> increases, population of strange baryons increases.
- For non-interacting quark-gluon plasma:

$$C_{BS} = R_{11}^{BS} = \frac{\langle (u+d+s)(s) \rangle}{\langle s^2 \rangle} = 1$$

Reference: V.Koch, A.Majumder, and J.Randrup, Phys.Rev.Lett.95, 182301 (2005).





Reference : Phys. Rev. Lett. 111, 082301 (2013).

- B-S (top) and Q-S (bottom) correlations, properly scaled by the strangeness fluctuations and powers of the fractional baryonic and electric charges.
- In the non-interacting quark gas, all these ratios are unity (shown by the lines at high temperatures ).
- ➢ Higher order ratios are more sensitive.



In order to study the contributions of different particle species to the B-S correlations, We consider ten situations: Anti-particles are also included.

| Different situations           | Particles included                                                                                                                                                                                                                                                |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i) Net- $\Lambda$ vs. Net-K   | $\Lambda, \mathrm{K}^+$                                                                                                                                                                                                                                           |
| (ii) Net-P vs. Net-K           | p, K <sup>+</sup>                                                                                                                                                                                                                                                 |
| (iii) Net-P vs. Net- $\Lambda$ | p, Λ                                                                                                                                                                                                                                                              |
| (iv) Net-B vs. Net-S           | p, n, K <sup>+</sup> , K <sup>0</sup> , $\Lambda$ , $\Sigma^{-}$ , $\Sigma^{0}$ , $\Sigma^{+}$ , $\equiv^{-}$ , $\equiv^{0}$ , $\Omega^{-}$                                                                                                                       |
| (v) B-S(excl. s-baryon)        | p, n, K <sup>+</sup> , K <sup>0</sup>                                                                                                                                                                                                                             |
| (vi) B-S(excl. $\Lambda$ )     | p, n, K <sup>+</sup> , K <sup>0</sup> , $\Sigma^{-}$ , $\Sigma^{0}$ , $\Sigma^{+}$ , $\equiv^{-}$ , $\equiv^{0}$ , $\Omega^{-}$                                                                                                                                   |
| (vii) B-S(excl. no-s-baryon)   | $\mathrm{K}^{\scriptscriptstyle +},\mathrm{K}^{\scriptscriptstyle 0},\Lambda,\Sigma^{\scriptscriptstyle -},\Sigma^{\scriptscriptstyle 0},\Sigma^{\scriptscriptstyle +},\equiv^{\scriptscriptstyle -},\equiv^{\scriptscriptstyle 0},\Omega^{\scriptscriptstyle -}$ |
| (viii) B-S(excl. p)            | n, K <sup>+</sup> , K <sup>0</sup> , $\Lambda$ , $\Sigma^{-}$ , $\Sigma^{0}$ , $\Sigma^{+}$ , $\equiv^{-}$ , $\equiv^{0}$ , $\Omega^{-}$                                                                                                                          |
| (ix) B-S(excl. s-meson)        | p, n, $\Lambda$ , $\Sigma^{-}$ , $\Sigma^{0}$ , $\Sigma^{+}$ , $\equiv^{-}$ , $\equiv^{0}$ , $\Omega^{-}$                                                                                                                                                         |
| (x) B-S(excl. $K^+$ )          | p, n, K <sup>0</sup> , $\Lambda$ , $\Sigma^{-}$ , $\Sigma^{0}$ , $\Sigma^{+}$ , $\Xi^{-}$ , $\Xi^{0}$ , $\Omega^{-}$                                                                                                                                              |



## Centrality Dependence(I): i-iv



8/25/2016



## Centrality Dependence(II): iv-x







- S-baryons have contributions to B-S correlations.
- S-mesons have contributions to strangeness fluctuations.
- These ratios does not show any large centrality dependence.

8/25/2016



## Energy Dependence (I): i-iv



- The second order ratio is shown as a function of energy.
- The strangeness fluctuations of net- Λ is smaller than that of net-K.

#### 8/25/2016



## Energy Dependence (II): iv-x



The ratios have a strong species dependence.

> The higher order ratios are more sensitive to energy.

8/25/2016



### Summary

### > The centrality and energy dependence of B-S correlations.

- $\succ$  The ratios are comparable with the results from Lattice QCD.
- $\succ$  The ratios show weakly centrality dependence.
- The second order ratio is shown as a function of energy, higher order ratio is more sensitive to energy.

#### > The contributions of particle species to the B-S correlations.

- Strange-baryons and Strange-mesons have contributions to the B-S correlations and strangeness fluctuations respectively.
- $\succ$  The ratios have a strong species dependence.
- $\succ \Lambda$  is at least included in the measurements.

# Thanks for your listen!