Two－body non－leptonic heavy－to－heavy decays at NNLO in QCD factorization approach

李 新 强
华中 师 范 大 学

in collaboration with Tobias Huber and Susanne Kränkl
based on $\mathbf{1 6 0 6 . 0 2 8 8 8}$

中国物理学会高能物理分会第十二届全国粒子物理学术会议
2016年8月24日, 合肥

Outline

1 Introduction

2 QCDF and SCET for hadronic matrix elements

3 The NNLO correction to heavy-light final states

4 Conclusion and outlook

Why B physics:

- Motivation of B physics:
- to test the CKM mechanism of CP violation,
 to search for NP signals beyond the SM;
\hookrightarrow complementary to EWP tests @ (LEP, Tevatron) and direct NP searches @ (LHC)
- to understand how quarks and gluons are confined into hadrons, i.e., the non-pert. aspects of QCD;

\hookrightarrow operator product expansion, QCD effective field theories, factorization theorems
- Three different classes: depending on the different final states, B-hadron weak decays can be divided into three classes:

$$
\text { leptonic, semi-leptonic, } \quad \text { non-leptonic }
$$

Non-leptonic B decays:

- Play a crucial role in testing and qualifying the CKM mechanism of quark flavour mixing:
- α : from time-dep. CP asym. in $B \rightarrow \pi \pi, \pi \rho$ and $\rho \rho$ decays;

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

$$
\left(90.4_{-1.0}^{+2.0}\right)^{\circ}
$$

- β : from $B \rightarrow J / \psi K_{S}$ and other charmonium modes;

$$
\left(22.62_{-0.42}^{+0.44}\right)^{\circ}
$$

- $\gamma:$ from $B \rightarrow D K, B \rightarrow K \pi \pi$, $B \rightarrow K K K$ decays;

$$
\left(67.01_{-1.99}^{+0.88}\right)^{\circ}
$$

- $\beta_{s}:$ from $B_{s} \rightarrow J / \psi \phi$ and $B_{s} \rightarrow$ $\phi \phi$ decays, \cdots;

$$
\left(0.01882_{-0.00042}^{+0.00036}\right) \mathrm{rad}
$$

taken from CKMfitter group as of Summer 2015.

Why $\bar{B} \rightarrow D^{(*)+} L^{-}$and $\Lambda_{b} \rightarrow \Lambda_{c}^{+} L^{-}$decays:

- At the quark-level: they are mediated by the weak decay $b \rightarrow c \bar{u} d(s)$, where b - and c-quark are massive and the light quarks massless;

■ Physical picture relatively simpler: only current-current operators involved; spectatorscattering and annihilation effects power-suppressed; much simpler than $\bar{B} \rightarrow \pi^{+} \pi^{-}$;

■ Exp. status: thanks to BaBar, Belle, Tevatron and LHCb, as well as future Belle-II, more data available and the precision further improved;
[HFAG, 1412.7515]

- To catch up with the precise exp. measurements, it is now very necessary and urgent to further improve the theoretical calculation! \hookrightarrow this is our motivation for this project!

Difficulties in non-leptonic B decays:

- For a non-leptonic decay: both initial- and final-states are hadrons, involving very complicated QCD effect together with weak interaction, theoretically very difficult;
\hookrightarrow the simplicity of weak interaction overshadowed by complex strong interaction!
$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$decay:

- Non-leptonic B decay: a multi-scale problem with highly hierarchical interaction scales;

$$
\begin{array}{cccccc|}
\hline \text { EW interaction scale } & \gg \text { ext. mom'a in B rest frame } & > & \text { QCD-bound state effects } \\
\hline m_{W} \sim 80 \mathrm{GeV} & > & m_{b} \sim 5 \mathrm{GeV} & \gg & \Lambda_{\mathrm{QCD}} \sim 1 \mathrm{GeV} \\
m_{Z} \sim 91 \mathrm{GeV} & & \text { Two-body heany-to-heayy decays at NNLO in QCDF }
\end{array}
$$

Effective weak Hamiltonion for non-leptonic B decays:

■ The starting point: $\mathcal{L}_{\text {eff }}$ obtained by integrating out the heavy d.o.f. ($m_{W}, m_{Z}, m_{t} \gg m_{b}$); [BBL basis: Buras, Buchalla, Lautenbacher '96; CMM basis: Chetyrkin, Misiak, Münz '98]

$$
\mathcal{L}_{\mathrm{eff}} \sim G_{F} V_{\mathrm{CKM}} \times\left[\sum_{p=u, c} \sum_{i=1,2} C_{i} \mathcal{O}_{i}^{p}+\sum_{3, \ldots, 6} C_{i} \mathcal{O}_{i}+\sum_{7, \ldots, 10} C_{i} \mathcal{O}_{i}+\sum_{7 \gamma, 8 g} C_{i} \mathcal{O}_{i}\right]
$$

- C_{i} : containing physics above $\mu \sim m_{b}$; pert. calculable; NNLO program complete;
[Buras, Buchalla, Lautenbacher '96; Gorbahn, Haisch '04]

- \mathcal{Q}_{i} : local dim-6 operators; $\left\langle\mathcal{Q}_{i}\right\rangle$ containing physics below $\mu \sim m_{b}$;

Calculation of the hadronic matrix elements of Q_{i} :

- $\left\langle M_{1} M_{2}\right| \mathcal{Q}_{i}|\bar{B}\rangle$: depends on the spin and parity of $M_{1,2}$; final-state re-scattering determines strong phases, and hence direct CP asymmetries;
\hookrightarrow still a multi-scale, strong-interaction problem!

- Effective theories/Factorization theorem/Approximate symmetries of QCD / \cdots : express $\left\langle M_{1} M_{2}\right| Q_{i}|\bar{B}\rangle$ in terms of (few) universal non-perturbative hadronic quantities; PQCD, QCDF, SCET, LCSR, lattice QCD, Isospin, U-Spin, V-Spin, and flavour $\operatorname{SU}(3)$ symmetries, . .
- $\left\langle D^{+} L^{-}\right| \mathcal{Q}_{i}|\bar{B}\rangle$ in QCDF: in the heavy-quark limit, it obeys the factorization formula
[BBNS'99-'04]

$$
\left\langle D^{+} L^{-}\right| \mathcal{Q}_{i}|\bar{B}\rangle=\sum_{j} F_{j}^{B \rightarrow D}\left(m_{L}^{2}\right) \int_{0}^{1} d u T_{i j}(u) \Phi_{L}(u)+\mathcal{O}\left(1 / m_{b}\right)
$$

- $F_{j}^{B \rightarrow D}: B \rightarrow D$ transition form factors; contains non-pert. long-distance effects;
- Φ_{L} : the LCDA of the light meson; contains non-pert. long-distance effects;
- $T_{i j}$: the hard-scattering kernels, perturbatively calculable order-by-order in α_{s};
- QCDF: a systematic framework to all orders in α_{s}, but limited by $1 / m_{b}$ corrections.

Factorization formula from the SCET point of view:

- SCET: an EFT of QCD designed to describe processes involving energetic hadrons/jets; [Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02; Becher, Broggio, Ferroglia '14]
- In a two-body $B \rightarrow M M^{\prime}$ decay: relevant degrees of freedom including
- low-virtuality modes:
* HQET fields: $p-m_{b} v \sim \mathcal{O}(\Lambda)$
* soft spectators in B meson:
$p_{s}^{\mu} \sim \Lambda \ll m_{b,} \quad p_{s}^{2} \sim \mathcal{O}\left(\Lambda^{2}\right)$
* collinear quarks and gluons in pion: $E_{c} \sim m_{b}, \quad p_{c}^{2} \sim \mathcal{O}\left(\Lambda^{2}\right)$
- high-virtuality modes:
* hard modes: (heavy quark + collinear $)^{2} \sim \mathcal{O}\left(m_{b}^{2}\right)$
* hard-collinear modes: $(\text { soft }+ \text { collinear })^{2} \sim \mathcal{O}\left(m_{b} \Lambda\right)$
- In SCET, factorization established because various types of fields with differing kinematics decouple at the level of the $\mathcal{L}_{\text {tot }}=\mathcal{L}_{n}+\mathcal{L}_{\bar{n}}+\mathcal{L}_{s}$;
[Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02; Becher, Broggio, Ferroglia '14]
- For $T_{i j}$: perform the one-step matching from QCD onto $\operatorname{SCET}_{\mathrm{I}}(h c, c, s)$;

■ SCET: field-theoretical basis for QCDF, equiv. to Feynman diagrammatic factorization; $\hookrightarrow \quad$ SCET factorization is exactly the same as QCDF;

Features for heavy-light final states in QCDF:

- Relevant Feynman diagrams for heavy-light final states:

- Only colour-allowed tree amplitude, no colour-suppressed tree nor penguin contributions;

■ Only vertex kernels to $T_{i j}$, spectator-scattering and weak annihilation are power-suppressed; [Beneke, Buchalla, Neubert, Sachrajda, '00; Bauer, Pirjol, Stewart, '01; Leibovich, Ligeti, Stewart, Wise, '03]

■ Factorization theorem well established in these class-I decays;
[Beneke, Buchalla, Neubert, Sachrajda, '00; Bauer, Pirjol, Stewart, '01; Leibovich, Ligeti, Stewart, Wise, '03]
■ Motivation for NNLO: NLO result colour-suppressed alongside with small WC; At NNLO colour suppression lifted and large WC re-enters; \hookrightarrow how about the NNLO corrections?

Factorization formula for $\bar{B}_{(s)} \rightarrow D_{(s)}^{(*)+} L^{-}$:

- In the heavy-quark limit, the decay amplitude for $\bar{B}^{0} \rightarrow D^{+} \pi^{-}$is given by: [BBNS, '00]

$$
\left\langle D^{+} \pi^{-}\right| Q_{i}\left|\bar{B}^{0}\right\rangle=\sum_{j} F_{j}^{B \rightarrow D}\left(m_{\pi}^{2}\right) \int_{0}^{1} d u T_{i j}^{I}(u) \phi_{L}(u)
$$

- Demonstration of factorization based on Feynman diagrams at two-loop order: [BBNS, '00]

$$
\begin{aligned}
& F_{B \rightarrow D}^{(0)} \cdot T^{(0)} * \Phi_{\pi}^{(0)}=A^{(0)} \\
& F_{B \rightarrow D}^{(0)} \cdot T^{(1)} * \Phi_{\pi}^{(0)}=A^{(1)}-F_{B \rightarrow D}^{(1)} \cdot T^{(0)} * \Phi_{\pi}^{(0)}-F_{B \rightarrow D}^{(0)} \cdot T^{(0)} * \Phi_{\pi}^{(1)} \\
& F_{B \rightarrow D}^{(0)} \cdot T^{(2)} * \Phi_{\pi}^{(0)}=A^{(2)}- \\
& \\
& \quad \begin{aligned}
&\left(F_{B \rightarrow D}^{(0)} \cdot T^{(1)} * \Phi_{\pi}^{(1)}-F_{B \rightarrow D}^{(1)} \cdot T^{(1)} * \Phi_{\pi}^{(0)}\right. \\
& \quad-F_{B \rightarrow D}^{(2)} \cdot T^{(0)} * \Phi_{\pi}^{(0)}-F_{B \rightarrow D}^{(0)} \cdot T^{(0)} * \Phi_{\pi}^{(2)}-F_{B \rightarrow D}^{(1)} \cdot T^{(0)} * \Phi_{\pi}^{(1)}
\end{aligned}
\end{aligned}
$$

- Proof within SCET: factorization \Leftrightarrow separation of scales and decoupling $\Leftrightarrow Q_{i}=Q_{c} \times Q_{s}$ at the Langrangian level $\mathcal{L}=\mathcal{L}_{c}^{0}+\mathcal{L}_{s}^{0} ;$
[Bauer, Pirjol, Stewart, '01]

$$
\langle D \pi|(\bar{c} b)(\bar{u} d)|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)
$$

Universal functions:

$$
\begin{aligned}
& \left\langle D^{(*)}\right| O_{s}|B\rangle=\xi\left(v \cdot v^{\prime}\right) \\
& \langle\pi| O_{c}(x)|0\rangle=f_{\pi} \phi_{\pi}(x)
\end{aligned}
$$

Calculate T, $\quad \alpha_{s}(Q)$
$Q=E_{\pi}, m_{b}, m_{c}$
corrections will be $\Lambda / m_{c} \sim 30 \%$

The operator basis in QCD and SCET:

- The relevant weak Hamiltonian: [Buras, Buchalla, Lautenbacher '96; Chetyrkin, Misiak, Münz '98]

$$
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u d}^{*}\left(C_{1} \mathcal{Q}_{1}+C_{2} \mathcal{Q}_{2}\right)+\text { h.c. }
$$

- CMM operator basis in full QCD:
- Nonlocal SCET operator basis:

$$
\begin{array}{ll}
\quad \begin{array}{ll}
\mathcal{Q}_{1}=\bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) T^{A} b \bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) T^{A} u & \mathcal{O}_{1}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \chi \bar{h}_{v^{\prime}} \not h_{+}\left(1-\gamma_{5}\right) h_{v} \\
\mathcal{Q}_{2}=\bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b \bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) u
\end{array} & \mathcal{O}_{2}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \bar{h}_{v^{\prime}}^{\prime \prime h_{+}}\left(1-\gamma_{5}\right) \gamma_{\perp \beta} \gamma_{\perp \alpha} h_{v} \\
\quad+\text { four evanescent operators } & \mathcal{O}_{3}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \bar{h}_{v^{\prime}} h_{+}\left(1-\gamma_{5}\right) \gamma_{\perp \delta} \gamma_{\perp \gamma} \gamma \\
\text { ■ Evanescent operators in QCD: al- } & \mathcal{O}_{1}^{\prime}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \chi \bar{h}_{v^{\prime}} \not h_{+}\left(1+\gamma_{5}\right) h_{v} \\
\begin{array}{l}
\text { though vanish in 4-dim., but needed } \\
\text { to complete the operator basis un- } \\
\text { der renormalization! [Gorbahn, Haisch }
\end{array} & \mathcal{O}_{2}^{\prime}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \bar{h}_{v^{\prime}}^{\prime \prime} h_{+}\left(1+\gamma_{5}\right) \gamma_{\perp \alpha} \gamma_{\perp \beta} h_{v} \\
\text { 04; Gorbahn, Haisch, Misiak 05] } & \mathcal{O}_{3}^{\prime}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \bar{h}_{v^{\prime}} h_{+}\left(1+\gamma_{5}\right) \gamma_{\perp \alpha} \gamma_{\perp \beta} \gamma
\end{array}
$$

- Express QCD matrix elements $\left\langle\mathcal{Q}_{i}\right\rangle$ as a linear combination of SCET ones $\left\langle\mathcal{O}_{a}^{(\prime)}\right\rangle$:

$$
\left\langle\mathcal{Q}_{i}\right\rangle=\sum_{a=1}^{3}\left[H_{i a}\left\langle\mathcal{O}_{a}\right\rangle+H_{i a}^{\prime}\left\langle\mathcal{O}_{a}^{\prime}\right\rangle\right], \quad H_{i a} \text { and } H_{i a}^{\prime} \text { are the matching coefficients! }
$$

Matching calculation from QCD onto $\mathrm{SCET}_{\mathrm{I}}: ~ \mathrm{I}$

- The matching formula from full QCD onto SCET: $\left\langle\mathcal{Q}_{i}\right\rangle=\sum_{a=1}^{3}\left[H_{i a}\left\langle\mathcal{O}_{a}\right\rangle+H_{i a}^{\prime}\left\langle\mathcal{O}_{a}^{\prime}\right\rangle\right]$
- Renormalized on-shell matrix elements $\left\langle\mathcal{Q}_{i}\right\rangle$ up to 2-loop order: in five-flavour theory!

$$
\begin{aligned}
\left\langle\mathcal{Q}_{i}\right\rangle=\left\{A_{i a}^{(0)}\right. & +\frac{\alpha_{s}}{4 \pi}\left[A_{i a}^{(1)}+Z_{e r}^{(1)} A_{i a}^{(0)}+Z_{i j}^{(1)} A_{j a}^{(0)}\right] \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[A_{i a}^{(2)}+Z_{i j}^{(1)} A_{j a}^{(1)}+Z_{i j}^{(2)} A_{j a}^{(0)}+Z_{e t}^{(1)} A_{i a}^{(1)}+Z_{e t}^{(2)} A_{i a}^{(0)}+Z_{e t}^{(1)} z_{i j}^{(1)} A_{j a}^{(0)}\right. \\
& \left.\left.+(-i) \delta \delta_{b}^{(1)} A_{i a}^{*(1)}+(-i) \delta m_{c}^{(1)} A_{i a}^{* *(1)}+Z_{\alpha}^{(1)} A_{i a}^{(1)}\right]+\mathcal{O}\left(\alpha_{s}^{3}\right)\right\}\left\langle\mathcal{O}_{a}^{(0)}\right. \\
& +\left(A \leftrightarrow A^{\prime}\right)\left\langle\mathcal{O}_{a}^{\prime}\right\rangle^{(0)}
\end{aligned}
$$

- Renormalized on-shell matrix elements $\left\langle\mathcal{O}_{a}^{(\prime)}\right\rangle$ up to 2-loop order: in three-flavour theory!

$$
\begin{aligned}
&\left\langle\mathcal{O}_{a}\right\rangle=\left\{\delta_{a b}\right.+\frac{\hat{\alpha}_{s}}{4 \pi}\left[M_{a b}^{(1)}+Y_{e x t}^{(1)} \delta_{a b}+Y_{a b}^{(1)}\right] \\
&+\left(\frac{\hat{\alpha}_{s}}{4 \pi}\right)^{2}\left[M_{a b}^{(2)}+Y_{e x t}^{(1)} M_{a b}^{(1)}+Y_{a c}^{(1)} M_{c b}^{(1)}+\hat{Z}_{\alpha}^{(1)} M_{a b}^{(1)}+Y_{e x t}^{(2)} \delta_{a b}\right. \\
&\left.\left.+Y_{e x t}^{(1)} Y_{a b}^{(1)}+Y_{a b}^{(2)}\right]+\mathcal{O}\left(\hat{\alpha}_{s}^{3}\right)\right\}\left\langle\mathcal{O}_{b}\right\rangle^{(0)} \\
&=\left\{\delta_{a b}+\frac{\hat{\alpha}_{s}}{4 \pi} Y_{a b}^{(1)}+\left(\frac{\hat{\alpha}_{s}}{4 \pi}\right)^{2} Y_{a b}^{(2)}+\mathcal{O}\left(\hat{\alpha}_{s}^{3}\right)\right\}\left\langle\mathcal{O}_{b}\right\rangle^{(0)}
\end{aligned}
$$

In the DR scheme, $Y_{\text {ext }}=1$, and $M_{a b}^{(1)}=M_{a b}^{(2)}=$ 0 because in SCET only scaleless integrals involved.

Matching calculation from QCD onto $\mathrm{SCET}_{\mathrm{I}}$: II

- To extract $T_{i j}$ from the matching procedure, introduce two factorized QCD operators:

$$
\begin{aligned}
Q^{(\prime) \mathrm{QCD}} & =\left[\bar{q} \frac{\not \prime_{-}}{2}\left(1-\gamma_{5}\right) q\right]\left[\bar{c} \not \eta_{+}\left(1 \mp \gamma_{5}\right) b\right]=C_{\bar{q} q} C_{F F}^{\mathrm{D}} O_{1}^{(\prime)}+C_{\bar{q} q} C_{F F}^{\mathrm{ND}} O_{1}^{(\prime)} \\
C_{\bar{q} q} & =1+\mathcal{O}\left(\alpha_{s}^{2}\right), \quad C_{F F}^{\mathrm{D}}=1+\mathcal{O}\left(\alpha_{s}\right), \quad C_{F F}^{\mathrm{ND}}=\mathcal{O}\left(\alpha_{s}\right)
\end{aligned}
$$

\hookrightarrow their matrix element is the product of a light-meson LCDA and the full heavy-to-heavy form factor;

- The final matching formula from QCD onto SCET rewritten as:

$$
\begin{gathered}
\left\langle\mathcal{Q}_{i}\right\rangle=T_{i}\left\langle\mathcal{O}^{\mathrm{QCD}}\right\rangle+T_{i}^{\prime}\left\langle\mathcal{O}^{\prime \mathrm{QCD}}\right\rangle+\sum_{a>1}\left[H_{i a}\left\langle\mathcal{O}_{a}\right\rangle+H_{i a}^{\prime}\left\langle\mathcal{O}_{a}^{\prime}\right\rangle\right] \\
\hookrightarrow \quad\binom{\hat{T}_{i}}{\hat{T}_{i}^{\prime}}=\left(\begin{array}{ll}
C_{\bar{q} q} C_{F F}^{\mathrm{D}} & C_{\bar{q} q} C_{F F}^{\mathrm{ND}} \\
C_{\bar{q} q} C_{F F}^{\mathrm{ND}} & C_{\bar{q} q} C_{F F}^{\mathrm{D}}
\end{array}\right)^{-1}\binom{H_{i 1}}{H_{i 1}^{\prime}}
\end{gathered}
$$

- Final master formulas for the hard scattering kernels:

$$
\begin{aligned}
T_{i}^{(0)}= & A_{i 1}^{(0)}, \quad T_{i}^{(1)}=A_{i 1}^{(1) n f}+Z_{i j}^{(1)} A_{j 1}^{(0)} \\
T_{i}^{(2)}= & A_{i 1}^{(2) n f}+Z_{i j}^{(1)} A_{j 1}^{(1)}+Z_{i j}^{(2)} A_{j 1}^{(0)}+Z_{\alpha}^{(1)} A_{i 1}^{(1) n f}-\hat{T}_{i}^{(1)}\left[C_{F F}^{\mathrm{D}(1)}+Y_{11}^{(1)}-Z_{e x t}^{(1)}\right] \\
& -C_{F F}^{\mathrm{ND}(1)} \hat{T}_{i}^{\prime(1)}+(-i) \delta m_{b}^{(1)} A_{i 1}^{*(1) n f}+(-i) \delta m_{c}^{(1)} A_{i 1}^{* *(1) n f}-\sum_{b \neq 1} H_{i b}^{(1)} Y_{b 1}^{(1)}
\end{aligned}
$$

Explicit calculation of NNLO vertex corrections to T^{I} :

- Two-loop non-factorizable Feynman diagrams contributing to $A_{i 1}^{(2) n f}$:
[BBNS '01]

- about 70 two-loop diagrams;
- Laporta reduction based on IBP;

$\frac{5}{w_{0}} \frac{\sqrt{3}}{\mathrm{c}} \frac{\sqrt{3}}{\mathrm{~d}^{2}}$

- 39 new MIs and solved using DEs in a canonical basis;

■ Both UV and IR div. cancelled analytically, thus factorization established!

Multi-loop calculations in a nutshell: I

- Adopt the DR scheme with $D=4-2 \epsilon$, to regulate both the UV and IR div.; at two-loop order, UV and IR poles appear up to $1 / \epsilon^{2}$ and $1 / \epsilon^{4}$, respectively.
- Basis strategy and procedure:
- perform the general tensor reduction via Passarino-Veltman ansatz, \Longrightarrow thousands of scalar integrals,
- reduce them to Master Integrals via Laporta algorithm based on IBP identities \Longrightarrow totally 42 MIs, [Tkachov '81; Chetyrkin,Tkachov '81; Laporta '01; Anastasiou,Lazopoulos '04]
- calculate these MIs, very challenging as we need analytical results.
- Techniques used to calculate MIs: developed very rapidly in recent years;
- standard Feynman/Schwinger parameterisation, only for very simpler MIs;
- method of differential equations;
[Kotikov '91; Remiddi '97; Henn '13]
- Mellin-Barnes techniques;
[Smirnov '99; Tausk '99]
- method of sector decomposition, for numerical check!
[Binoth, Heinrich 00]

Calculate the MIs in a

- Besides the known ones, 39 new MIs found and computed based on the DE approach in a canonical basis; [Huber, Kränkl '15]
- Choose an "optimal" basis of MIs, so that the DEs decouple order-by-order in ϵ expansion, and the dependence of MIs on the kinematic variables is factorised from that on the ϵ :
[Henn, 1304.1806]

$$
\frac{\partial}{\partial x_{m}} \vec{M}\left(\epsilon, x_{n}\right)=\epsilon A_{m}\left(x_{n}\right) \vec{M}\left(\epsilon, x_{n}\right)
$$

- The above simplified form of DEs trivial to solve in terms of iterated integrals;
[Bell, Huber '14]
- Together with boundary conditions, analytic results of the MIs obtained in terms of generalised HPLs (or Goncharov polylogarithms); [Maitre, 0703052]
- The analytic results make it much easier to handel the threshold at $\bar{u} m_{b}^{2}=4 m_{c}^{2}$ and the convolution integral $\int_{0}^{1} d u T^{I}(u) \phi(u) ; \quad$ Bell, Beneke, Huber, Li '15]

\because
$I_{17}(u, z)$

$I_{21}(u, z)$

$I_{2}(u, z)$

$I_{14}(z)$

$I_{18}(u, z)$
I_{22}

$I_{3}(u, z)$

I_{15}

\because

$I_{23}(u, z)$

$I_{4}(u, z)$

$I_{16}(u, z)$

$I_{20}(z)$

$I_{24}(u, z)$

Predictions for $a_{1}\left(D^{(*)+} L^{-}\right)$:

- Convolution with the LCDA: $\quad a_{1}\left(D^{+} L^{-}\right)=\sum_{i=1}^{2} C_{i}(\mu) \int_{0}^{1} d u\left[\hat{T}_{i}(u, \mu)+\hat{T}_{i}^{\prime}(u, \mu)\right] \Phi_{L}(u, \mu)$
- Numerical results for $a_{1}\left(D^{+} K^{-}\right)$:

$$
\begin{aligned}
a_{1}\left(D^{+} K^{-}\right) & =1.025+[0.029+0.018 i]_{\mathrm{NLO}}+[0.016+0.028 i]_{\mathrm{NNLO}} \\
& =\left(1.069_{-0.012}^{+0.009}\right)+\left(0.046_{-0.015}^{+0.023}\right) i
\end{aligned}
$$

$\sim 2 \%$ correction to real part, $\sim 60 \%$ to imaginary part.
both the NLO and NNLO contribute constructively to the LO result.

■ Dependence on μ and quark-mass scheme: pole (blue) and $\overline{\mathrm{MS}}$ running (red) for $m_{b, c}$;

Considerable stabilization for the real part, but less for the imaginary part.

Predictions for class-I decays:

- Brs $\left(\times 10^{-3}\right.$ for $b \rightarrow c \bar{u} d$ and $\times 10^{-4}$ for $b \rightarrow c \bar{u} s$ transitions of $\bar{B}_{(s)} \rightarrow D_{(s)}^{(*)+} L^{-}$decays:

Decay mode	LO	NLO	NNLO	Exp.
$\bar{B}_{d} \rightarrow D^{+} \pi^{-}$	3.58	$3.79_{-0.42}^{+0.44}$	$3.93_{-0.42}^{+0.43}$	2.68 ± 0.13
$\bar{B}_{d} \rightarrow D^{*+} \pi^{-}$	3.15	$3.32_{-0.49}^{+0.52}$	$3.45_{-0.50}^{+0.53}$	2.76 ± 0.13
$\bar{B}_{d} \rightarrow D^{+} \rho^{-}$	9.51	$10.06_{-1.19}^{+1.25}$	$10.42_{-1.20}^{+1.24}$	7.5 ± 1.2
$\bar{B}_{d} \rightarrow D^{*+} \rho^{-}$	8.45	$8.91_{-0.71}^{+0.74}$	$9.24_{-0.71}^{+0.72}$	6.0 ± 0.8
$\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}$	4.00	$4.24_{-1.15}^{+1.32}$	$4.39_{-1.19}^{+1.36}$	3.04 ± 0.23
$\bar{B}_{s} \rightarrow D_{s}^{*+} \pi^{-}$	2.05	$2.16_{-0.49}^{+0.54}$	$2.24_{-0.50}^{+0.56}$	2.0 ± 0.5
$\bar{B}_{s} \rightarrow D_{s}^{+} \rho^{-}$	10.31	$10.91_{-3.02}^{+3.46}$	$11.30_{-3.11}^{+3.56}$	7.0 ± 1.5
$\bar{B}_{s} \rightarrow D_{s}^{*+} \rho^{-}$	5.86	$6.18_{-1.28}^{+1.38}$	$6.41_{-1.31}^{+1.42}$	10.2 ± 2.5
$\bar{B}_{d} \rightarrow D^{+} K^{-}$	2.74	$2.90_{-0.31}^{+0.33}$	$3.01_{-0.31}^{+0.32}$	1.97 ± 0.21
$\bar{B}_{d} \rightarrow D^{*+} K^{-}$	2.37	$2.50_{-0.36}^{+0.39}$	$2.59_{-0.37}^{+0.39}$	2.14 ± 0.16
$\bar{B}_{d} \rightarrow D^{+} K^{*-}$	4.79	$5.07_{-0.62}^{+0.65}$	$5.25_{-0.63}^{+0.65}$	4.5 ± 0.7
$\bar{B}_{d} \rightarrow D^{*+} K^{*-}$	4.30	$4.54_{-0.40}^{+0.41}$	$4.70_{-0.39}^{+0.40}$	-

■ Our predictions generally come out higher than the exp. data, especially for $\bar{B}_{d} \rightarrow D^{(*)+} \pi^{-}$and $\bar{B}_{d} \rightarrow D^{(*)+} \rho^{-}$;
■ For \bar{B}_{s} decays, our predictions still plagued by larger uncertainties from $B_{s} \rightarrow D_{s}^{(\prime)}$ transition form factors.

Test of factorization in class-I decays:

- Free from FFs uncertainties and particularly clean:

$$
R_{L}^{(*)} \equiv \frac{\Gamma\left(\bar{B}_{d} \rightarrow D^{(*)+} L^{-}\right)}{d \Gamma\left(\bar{B}_{d} \rightarrow D^{(*)+} \ell^{-} \bar{\nu}_{\ell}\right) /\left.d q^{2}\right|_{q^{2}=m_{L}^{2}}}=6 \pi^{2}\left|V_{i j}\right|^{2} f_{L}^{2}\left|a_{1}\left(D^{(*)+} L^{-}\right)\right|^{2} X_{L}^{(*)}
$$

$X_{V}=X_{V}^{*}=1$ for a vector or axial-vector meson, for a pseudoscalar $X_{L}^{(*)}$ deviates from 1 below the percent level;

$\left\|a_{1}\left(D^{(*)+} L^{-}\right)\right\|$	LO	NLO	NNLO	Exp.
$\left\|a_{1}\left(D^{+} \pi^{-}\right)\right\|$	1.025	$1.054_{-0.020}^{+0.022}$	$1.073_{-0.014}^{+0.012}$	0.89 ± 0.05
$\left\|a_{1}\left(D^{*+} \pi^{-}\right)\right\|$	1.025	$1.052_{-0.018}^{+0.020}$	$1.071_{-0.014}^{+0.013}$	0.96 ± 0.03
$\left\|a_{1}\left(D^{+} \rho^{-}\right)\right\|$	1.025	$1.054_{-0.019}^{+0.022}$	$1.072_{-0.014}^{+0.012}$	0.91 ± 0.08
$\left\|a_{1}\left(D^{*+} \rho^{-}\right)\right\|$	1.025	$1.052_{-0.018}^{+0.020}$	$1.071_{-0.014}^{+0.013}$	0.86 ± 0.06
$\left\|a_{1}\left(D^{+} K^{-}\right)\right\|$	1.025	$1.054_{-0.019}^{+0.022}$	$1.070_{-0.013}^{+0.010}$	0.87 ± 0.06
$\left\|a_{1}\left(D^{*+} K^{-}\right)\right\|$	1.025	$1.052_{-0.018}^{+0.020}$	$1.069_{-0.013}^{+0.010}$	0.97 ± 0.04
$\left\|a_{1}\left(D^{+} K^{*-}\right)\right\|$	1.025	$1.054_{-0.019}^{+0.022}$	$1.070_{-0.013}^{+0.010}$	0.99 ± 0.09
$\left\|a_{1}\left(D^{+} a_{1}^{-}\right)\right\|$	1.025	$1.054_{-0.019}^{+0.022}$	$1.072_{-0.014}^{+0.012}$	0.76 ± 0.19

- Our predictions result in an essentially universal value of $\left|a_{1}\left(D^{(*)+} L^{-}\right)\right| \simeq 1.07$ (1.05) at NNLO (NLO), being consistently higher than the central values favoured by the current exp. data!

Test of factorization and SU(3)symmetry:

- Ratios of $\bar{B}_{d, s} \rightarrow D_{s, d}^{(*)+} L^{-}$decay rates:
[Neubert, Stech, '97; Fleischer, Serra, Tuning, '04, '12]

$$
\mathcal{A}\left(\bar{B}_{d}^{0} \rightarrow D^{(*)+} \pi^{-}\right)=\text {Tree }+ \text { W-exchange }, \quad \mathcal{A}\left(\bar{B}_{d}^{0} \rightarrow D^{(*)+} K^{-}\right)=\text {Tree }
$$

\hookrightarrow useful to gain information on W-exchange contribution, to test factorization hypothesis and the $\mathrm{SU}(3)$ relations;

Ratios	LO	NLO	NNLO	Exp.
$\frac{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{+} \rho^{-}\right)}{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{+} \pi^{-}\right)}$	2.654	$2.653_{-0.158}^{+0.163}$	$2.653_{-0.158}^{+0.163}$	2.80 ± 0.47
$\frac{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{+} K^{*-}\right)}{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{*+} K^{-}\right)}$	2.019	$2.026_{-0.358}^{+0.404}$	$2.023_{-0.358}^{+0.403}$	2.103 ± 0.363
$\frac{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{+} K_{K}-\right)}{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{+} \pi^{-}\right)}$	0.077	$0.077_{-0.002}^{+0.002}$	$0.077_{-0.002}^{+0.002}$	0.074 ± 0.009
$\frac{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{*+} K^{-}\right)}{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{*+} \pi^{-}\right)}$	0.075	$0.075_{-0.002}^{+0.002}$	$0.075_{-0.002}^{+0.002}$	0.078 ± 0.007
$\frac{\operatorname{Br}\left(\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}\right)}{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{+} K^{-}\right)}$	14.67	$14.67_{-1.28}^{+1.34}$	$14.67_{-1.28}^{+1.34}$	15.43 ± 2.02
$\frac{\operatorname{Br}\left(\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}\right)}{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{+} \pi^{-}\right)}$	1.120	$1.120_{-0.104}^{+0.109}$	$1.120_{-0.104}^{+0.109}$	1.134 ± 0.102

- General consistency indicates small impact of the W-exchange topology and of nonfac. $\mathrm{SU}(3)$-breaking effects!
- With LQCD for $B_{(s)} \rightarrow D_{(s)}$ FFs, the last two allow precise measurement of fragmentation functions f_{s} / f_{d} !

Comments on the power correction in class-I decays:

- There exist power-suppressed corrections from spectator-scattering and W-exchange annihilation:

■ Our findings: our predictions for non-lep. to semi-lep ratios larger than the data, while for non-lep. ratios agree well with data;

- Possibility I: non-negligible power correction stemming from spectator-scattering and Wexchange annihilation that is negative in sign and $10-15 \%$ in size on the amplitude level;
$\hookrightarrow \quad$ render the factorization test via non-lep. to semi-lep ratios better, but cancel out in the non-lep. ratios;

■ Possibility II: to reduce the values of $\left|V_{c b}\right| \times$ FFs by $\sim 10 \%$;
$\hookrightarrow \quad$ render the Brs close to the current data, while keep the non-lep. ratios unchanged;

Predictions for $\Lambda_{b} \rightarrow \Lambda_{c}^{+} L^{-}$decays:

- At the LHC, Λ_{b} production constitutes $\sim 20 \%$ of b-hadrons;
- Due to $S=\frac{1}{2}$, its decays complementary to B-meson decays; \hookrightarrow a new testing ground for different QCD models and factorization assumptions used in B-meson case.

Decay mode	LO	NLO	NNLO	Exp.
$\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}$	2.60	$2.75_{-0.53}^{+0.53}$	$2.85_{-0.54}^{+0.54}$	$4.30{ }_{-0.35}^{+0.36}$
$\bar{B}_{d} \rightarrow D^{+} \pi^{-}$	3.58	$3.79_{-0.42}^{+0.44}$	$3.93_{-0.42}^{+0.43}$	2.68 ± 0.13
$\Lambda_{b} \rightarrow \Lambda_{c}^{+} K^{-}$	2.02	$2.14_{-0.39}^{+0.40}$	$2.21_{-0.40}^{+0.40}$	3.42 ± 0.33
$\bar{B}_{d} \rightarrow D^{+} K^{-}$	2.74	$2.90_{-0.31}^{+0.33}$	$3.01_{-0.31}^{+0.32}$	1.97 ± 0.21
$\frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \mu^{-} \bar{\nu}\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)}$	18.88	$17.7_{-2.33}^{+2.31}$	$17.25_{-2.18}^{+2.19}$	$16.6_{-4.7}^{+4.1}$
$\frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} K^{-}\right)}{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)}(\%)$	7.77	$7.77_{-0.18}^{+0.19}$	$7.77_{-0.18}^{+0.19}$	7.31 ± 0.23
$\frac{\operatorname{Br}\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)}{\operatorname{Br}\left(\bar{B}_{d} \rightarrow D^{+} \pi^{-}\right)}$	0.73	$0.73_{-0.15}^{+0.16}$	$0.73_{-0.15}^{+0.16}$	3.3 ± 1.2

- For mesonic decays, larger than data, but for baryonic decays, lower than data, and NNLO has a right directions!
- From the ratios, non-fact. effects should be small in these Λ_{b} decays;

Conclusion and outlook

－In QCDF／SCET framework，the 2－loop vertex corrections to colour－allowed tree topology a_{1} for class－I decays $\bar{B}_{(s)} \rightarrow D_{(s)}^{(*)+} L^{-}$and $\Lambda_{b} \rightarrow \Lambda_{c}^{+} L^{-}$were calculate；
－For the colour－allowed tree amplitude a_{1} ，the NNLO contributions yield a positive shift， sizable for its imaginary part，but small for its real part and its magnitude；
－The dependence on μ gets reduced for the real part，but does not occur for the imaginary part；a quasi－universal $\left|a_{1}\right|$ is predicted in QCDF even up to the NNLO accuracy；
－For \bar{B}_{d} decays，the central values are in general higher compared to the exp．data；For \bar{B}_{s} decays，our predictions are still plagued by large uncertainties from form factors；
－For the baryonic decays，our predictions turn out to be $20-30 \%$ smaller than the exp． data；Interesting to understand the reason for this difference in the \bar{B}_{d} and the Λ_{b} decays；
－$\Lambda_{b} \rightarrow \Lambda_{c}^{+} L^{-}$decays provide another testing ground for different QCD models and factor－ ization assumptions used in B－meson case；
谢 谢 大 家!

