Two-body non-leptonic heavy-to-heavy decays at NNLO in QCD factorization approach

李 新 强

华中师范大学

in collaboration with Tobias Huber and Susanne Kränkl

based on 1606.02888

中国物理学会高能物理分会第十二届全国粒子物理学术会议

2016年8月24日, 合肥

Xin-Qiang Li (CCNU)

1 Introduction

2 QCDF and SCET for hadronic matrix elements

3 The NNLO correction to heavy-light final states

4 Conclusion and outlook

Why B physics:

Motivation of B physics:

- to test the CKM mechanism of CP violation, to search for NP signals beyond the SM;

 \hookrightarrow complementary to EWP tests @ (LEP, Tevatron) and direct NP searches @ (LHC)

 to understand how quarks and gluons are confined into hadrons, i.e., the non-pert. aspects of QCD;

 \hookrightarrow operator product expansion, QCD effective field theories, factorization theorems

Three different classes: depending on the different final states, B-hadron weak decays can be divided into three classes:

leptonic, semi-leptonic,

non-leptonic

Simple quark-line diagrams

Non-leptonic B decays:

Play a crucial role in testing and qualifying the CKM mechanism of quark flavour mixing:

- α : from time-dep. CP asym. in $B \to \pi \pi, \pi \rho$ and $\rho \rho$ decays;

 $(90.4^{+2.0}_{-1.0})^{\circ}$

- β : from $B \rightarrow J/\psi K_S$ and other charmonium modes;

 $(22.62^{+0.44}_{-0.42})^{\circ}$

- γ : from $B \to DK$, $B \to K\pi\pi$, $B \to KKK$ decays;

 $(67.01^{+0.88}_{-1.99})^{\circ}$

- β_s : from $B_s \to J/\psi\phi$ and $B_s \to \phi\phi$ decays, ...;

 $(0.01882^{+0.00036}_{-0.00042})$ rad

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

taken from CKMfitter group as of Summer 2015.

Why $\overline{B} \to D^{(*)+}L^-$ and $\Lambda_b \to \Lambda_c^+L^-$ decays: Class-I

- At the quark-level: they are mediated by the weak decay $b \rightarrow c\overline{u}d(s)$, where b- and c-quark are massive and the light quarks massless;
- Physical picture relatively simpler: only current-current operators involved; spectatorscattering and annihilation effects power-suppressed; much simpler than $\bar{B} \to \pi^+\pi^-$;
- Exp. status: thanks to BaBar, Belle, Tevatron and LHCb, as well as future Belle-II, more data available and the precision further improved; [*HFAG*, 1412.7515]
- To catch up with the precise exp. measurements, it is now very necessary and urgent to further improve the theoretical calculation! → this is our motivation for this project!

Difficulties in non-leptonic B decays:

 $\bar{B}^0 \rightarrow D^+ \pi^-$ decay:

• For a non-leptonic decay: both initial- and final-states are hadrons, involving very complicated QCD effect together with weak interaction, theoretically very difficult;

⇔the simplicity of weak interaction overshadowed by complex strong interaction!

Non-leptonic B decay: a multi-scale problem with highly hierarchical interaction scales;

Effective weak Hamiltonion for non-leptonic B decays:

The starting point: \mathcal{L}_{eff} obtained by integrating out the heavy d.o.f. $(m_W, m_Z, m_t \gg m_b)$; [BBL basis: Buras, Buchalla, Lautenbacher '96; CMM basis: Chetyrkin, Misiak, Minz '98]

Q_i: local dim-6 operators; $\langle Q_i \rangle$ containing physics below $\mu \sim m_b$;

Calculation of the hadronic matrix elements of Q_i :

• $\langle M_1 M_2 | Q_i | \bar{B} \rangle$: depends on the spin and parity of $M_{1,2}$; final-state re-scattering determines strong phases, and hence direct CP asymmetries;

 $\hookrightarrow still \ a \ multi-scale, \ strong-interaction \ problem!$

Effective theories/Factorization theorem/Approximate symmetries of QCD/····: express $\langle M_1 M_2 | Q_i | \bar{B} \rangle$ in terms of (few) universal non-perturbative hadronic quantities;

PQCD, QCDF, SCET, LCSR, lattice QCD, Isospin, U-Spin, V-Spin, and flavour SU(3) symmetries, · · ·

• $\langle D^+L^- | Q_i | \bar{B} \rangle$ in QCDF: in the heavy-quark limit, it obeys the factorization formula [BBNS'99-'04]

$$\langle D^+L^-|\mathcal{Q}_i|\bar{B}\rangle = \sum_j F_j^{B\to D}(m_L^2) \int_0^1 du \, T_{ij}(u) \Phi_L(u) + \mathcal{O}(1/m_b)$$

- $F_i^{B \to D}$: $B \to D$ transition form factors; contains non-pert. long-distance effects;

- Φ_L : the LCDA of the light meson; contains non-pert. long-distance effects;
- T_{ij} : the hard-scattering kernels, perturbatively calculable order-by-order in α_s ;
- **QCDF**: a systematic framework to all orders in α_s , but limited by $1/m_b$ corrections.

Xin-Qiang Li (CCNU)

Factorization formula from the SCET point of view:

- SCET: an EFT of QCD designed to describe processes involving energetic hadrons/jets; [Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02; Becher, Broggio, Ferroglia '14]
- In a two-body $B \rightarrow MM'$ decay: relevant degrees of freedom including
 - Iow-virtuality modes:
 - * HQET fields: $p m_b v \sim \mathcal{O}(\Lambda)$
 - * soft spectators in *B* meson: $p_a^{\mu} \sim \Lambda \ll m_{b_1} \quad p_a^2 \sim \mathcal{O}(\Lambda^2)$
 - \star collinear quarks and gluons in pion: $E_c \sim m_b, \quad p_c^2 \sim = \mathcal{O}(\Lambda^2)$

- high-virtuality modes:
 - * hard modes: (heavy quark + collinear)² ~ $\mathcal{O}(m_{h}^{2})$
 - \star hard-collinear modes: (soft + collinear)² $\sim \frac{\mathcal{O}(m_b\Lambda)}{\mathcal{O}(m_b\Lambda)}$

In SCET, factorization established because various types of fields with differing kinematics decouple at the level of the $\mathcal{L}_{tot} = \mathcal{L}_n + \mathcal{L}_{\bar{n}} + \mathcal{L}_s$;

[Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02; Becher, Broggio, Ferroglia '14]

• For T_{ij} : perform the one-step matching from QCD onto SCET_I(hc, c, s);

■ SCET: field-theoretical basis for QCDF, equiv. to Feynman diagrammatic factorization; → SCET factorization is exactly the same as QCDF; [Beneke '15]

Features for heavy-light final states in QCDF:

Relevant Feynman diagrams for heavy-light final states:

• Only colour-allowed tree amplitude, no colour-suppressed tree nor penguin contributions;

 Only vertex kernels to T_{ij}, spectator-scattering and weak annihilation are power-suppressed; [Beneke, Buchalla, Neubert, Sachrajda, '00; Bauer, Pirjol, Stewart, '01; Leibovich, Ligeti, Stewart, Wise, '03]

- Factorization theorem well established in these class-I decays;
 [Beneke, Buchalla, Neubert, Sachrajda, '00; Bauer, Pirjol, Stewart, '01; Leibovich, Ligeti, Stewart, Wise, '03]

Factorization formula for $\bar{B}_{(s)} \rightarrow D^{(*)+}_{(s)}L^-$:

In the heavy-quark limit, the decay amplitude for $\bar{B}^0 \to D^+\pi^-$ is given by: [BBNS, '00]

$$\langle D^+\pi^-|Q_i|\bar{B}^0\rangle = \sum_j F_j^{B\to D}(m_\pi^2) \int_0^1 du \, T_{ij}^J(u)\phi_L(u)$$

Demonstration of factorization based on Feynman diagrams at two-loop order: [BBNS, '00]

$$\begin{split} F^{(0)}_{B\to D} \cdot T^{(0)} * \Phi^{(0)}_{\pi} &= A^{(0)} \\ F^{(0)}_{B\to D} \cdot T^{(1)} * \Phi^{(0)}_{\pi} &= A^{(1)} - F^{(1)}_{B\to D} \cdot T^{(0)} * \Phi^{(0)}_{\pi} - F^{(0)}_{B\to D} \cdot T^{(0)} * \Phi^{(1)}_{\pi} \\ F^{(0)}_{B\to D} \cdot T^{(2)} * \Phi^{(0)}_{\pi} &= A^{(2)} - F^{(0)}_{B\to D} \cdot T^{(1)} * \Phi^{(1)}_{\pi} - F^{(1)}_{B\to D} \cdot T^{(1)} * \Phi^{(0)}_{\pi} \\ &- F^{(2)}_{B\to D} \cdot T^{(0)} * \Phi^{(0)}_{\pi} - F^{(0)}_{B\to D} \cdot T^{(0)} * \Phi^{(2)}_{\pi} - F^{(1)}_{B\to D} \cdot T^{(0)} * \Phi^{(1)}_{\pi} \end{split}$$

Proof within SCET: factorization \Leftrightarrow separation of scales and decoupling $\Leftrightarrow Q_i = Q_c \times Q_s$ at the Langrangian level $\mathcal{L} = \mathcal{L}_c^0 + \mathcal{L}_s^0$; [Bauer, Pirjol, Stewart, '01]

$$\begin{split} \langle D\pi | (\bar{c}b) (\bar{u}d) | B \rangle &= N \, \xi (v \cdot v') \int_0^1 dx \, T(x, \mu) \, \phi_\pi(x, \mu) \\ \text{Jniversal functions:} \\ \langle D^{(*)} | O_s | B \rangle &= \xi (v \cdot v') \\ \langle \pi | O_c(x) | 0 \rangle &= f_\pi \phi_\pi(x) \end{split} \qquad \begin{array}{l} \text{Calculate T,} \quad \alpha_s(Q) \\ Q &= E_\pi, m_b, m_c \\ \text{corrections will be } \Lambda/m_c \sim 30\% \end{split}$$

The operator basis in QCD and SCET:

The relevant weak Hamiltonian:

[Buras, Buchalla, Lautenbacher '96; Chetyrkin, Misiak, Münz '98]

$$\mathcal{H}_{\rm eff} = \frac{G_F}{\sqrt{2}} V_{cb} V_{ud}^* \left(C_1 \mathcal{Q}_1 + C_2 \mathcal{Q}_2 \right) + \text{h.c.}$$

Nonlocal SCET operator basis:

• CMM operator basis in full QCD:

$$\mathcal{Q}_1 = \bar{c}\gamma^{\mu}(1-\gamma_5)T^A b \ \bar{d}\gamma_{\mu}(1-\gamma_5)T^A u$$
$$\mathcal{Q}_2 = \bar{c}\gamma^{\mu}(1-\gamma_5)b \ \bar{d}\gamma_{\mu}(1-\gamma_5)u$$

+ four evanescent operators

Evanescent operators in QCD: although vanish in 4-dim., but needed to complete the operator basis under renormalization! [Gorbahn, Haisch 04; Gorbahn, Haisch, Misiak 05]

$$\begin{aligned} \mathcal{O}_{1} &= \bar{\chi} \frac{\#_{-}}{2} (1 - \gamma_{5}) \chi \ \bar{h}_{\nu'} \#_{+} (1 - \gamma_{5}) h_{\nu} \\ \mathcal{O}_{2} &= \bar{\chi} \frac{\#_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \ \bar{h}_{\nu'} \#_{+} (1 - \gamma_{5}) \gamma_{\perp \beta} \gamma_{\perp \alpha} h_{\nu} \\ \mathcal{O}_{3} &= \bar{\chi} \frac{\#_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \ \bar{h}_{\nu'} \#_{+} (1 - \gamma_{5}) \gamma_{\perp \delta} \gamma_{\perp \gamma} \gamma_{\nu} \\ \mathcal{O}_{1}' &= \bar{\chi} \frac{\#_{-}}{2} (1 - \gamma_{5}) \chi \ \bar{h}_{\nu'} \#_{+} (1 + \gamma_{5}) h_{\nu} \\ \mathcal{O}_{2}' &= \bar{\chi} \frac{\#_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \ \bar{h}_{\nu'} \#_{+} (1 + \gamma_{5}) \gamma_{\perp \alpha} \gamma_{\perp \beta} h_{\nu} \\ \mathcal{O}_{3}' &= \bar{\chi} \frac{\#_{-}}{2} (1 - \gamma_{5}) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \ \bar{h}_{\nu'} \#_{+} (1 + \gamma_{5}) \gamma_{\perp \alpha} \gamma_{\perp \beta} h_{\nu} \end{aligned}$$

• Express QCD matrix elements $\langle Q_i \rangle$ as a linear combination of SCET ones $\langle O_a^{(\prime)} \rangle$:

 $\langle Q_i \rangle = \sum_{a=1}^{3} \left[H_{ia} \langle \mathcal{O}_a \rangle + H'_{ia} \langle \mathcal{O}'_a \rangle \right], \qquad H_{ia} \text{ and } H'_{ia} \text{ are the matching coefficients!}$

Xin-Qiang Li (CCNU)

Matching calculation from QCD onto SCET_I: I

• The matching formula from full QCD onto SCET: $\langle Q_i \rangle = \sum_{a=1}^{3} \left[H_{ia} \langle \mathcal{O}_a \rangle + H'_{ia} \langle \mathcal{O}'_a \rangle \right]$

Renormalized on-shell matrix elements $\langle Q_i \rangle$ up to 2-loop order: in five-flavour theory!

$$\begin{split} \langle \mathcal{Q}_i \rangle &= \left\{ A_{ia}^{(0)} + \frac{\alpha_s}{4\pi} \left[A_{ia}^{(1)} + Z_{ext}^{(1)} A_{ia}^{(0)} + Z_{ij}^{(1)} A_{ja}^{(0)} \right] \\ &+ \left(\frac{\alpha_s}{4\pi} \right)^2 \left[A_{ia}^{(2)} + Z_{ij}^{(1)} A_{ja}^{(1)} + Z_{ij}^{(2)} A_{ja}^{(0)} + Z_{ext}^{(1)} A_{ia}^{(1)} + Z_{ext}^{(2)} A_{ia}^{(0)} + Z_{ext}^{(1)} Z_{ij}^{(1)} A_{ja}^{(0)} \right. \\ &+ (-i) \delta m_b^{(1)} A_{ia}^{*(1)} + (-i) \delta m_c^{(1)} A_{ia}^{**(1)} + Z_{\alpha}^{(1)} A_{ia}^{(1)} \right] + \mathcal{O}(\alpha_s^3) \left. \right\} \langle \mathcal{O}_a \rangle^{(0)} \\ &+ (A \leftrightarrow A') \langle \mathcal{O}_a' \rangle^{(0)} \end{split}$$

Renormalized on-shell matrix elements $\langle \mathcal{O}_a^{(\prime)} \rangle$ up to 2-loop order: in three-flavour theory!

$$\begin{split} \langle \mathcal{O}_{a} \rangle &= \left\{ \delta_{ab} + \frac{\hat{\alpha}_{s}}{4\pi} \left[M_{ab}^{(1)} + Y_{ext}^{(1)} \delta_{ab} + Y_{ab}^{(1)} \right] \\ &+ \left(\frac{\hat{\alpha}_{s}}{4\pi} \right)^{2} \left[M_{ab}^{(2)} + Y_{ext}^{(1)} M_{ab}^{(1)} + Y_{ac}^{(1)} M_{cb}^{(1)} + \hat{Z}_{\alpha}^{(1)} M_{ab}^{(1)} + Y_{ext}^{(2)} \delta_{ab} \\ &+ Y_{ext}^{(1)} Y_{ab}^{(1)} + Y_{ab}^{(2)} \right] + \mathcal{O}\left(\hat{\alpha}_{s}^{3} \right) \right\} \langle \mathcal{O}_{b} \rangle^{(0)} \\ &= \left\{ \delta_{ab} + \frac{\hat{\alpha}_{s}}{4\pi} Y_{ab}^{(1)} + \left(\frac{\hat{\alpha}_{s}}{4\pi} \right)^{2} Y_{ab}^{(2)} + \mathcal{O}\left(\hat{\alpha}_{s}^{3} \right) \right\} \langle \mathcal{O}_{b} \rangle^{(0)} \end{split}$$

In the DR scheme, $Y_{ext} = 1$, and $M_{ab}^{(1)} = M_{ab}^{(2)} = 0$ because in SCET only scaleless integrals involved.

Matching calculation from QCD onto SCET_I: II

• To extract T_{ij} from the matching procedure, introduce two factorized QCD operators:

$$\begin{aligned} \mathcal{Q}^{(\prime)\text{QCD}} &= \left[\bar{q}\frac{\not{q}_{-}}{2}(1-\gamma_{5})q\right] \left[\bar{c}\not{q}_{+}(1\mp\gamma_{5})b\right] = C_{\bar{q}q}C_{FF}^{\text{D}}O_{1}^{(\prime)} + C_{\bar{q}q}C_{FF}^{\text{ND}}O_{1}^{(\prime)}\\ C_{\bar{q}q} &= 1 + \mathcal{O}(\alpha_{s}^{2}), \quad C_{FF}^{\text{D}} = 1 + \mathcal{O}(\alpha_{s}), \quad C_{FF}^{\text{ND}} = \mathcal{O}(\alpha_{s}) \end{aligned}$$

 \leftrightarrow their matrix element is the product of a light-meson LCDA and the full heavy-to-heavy form factor;

The final matching formula from QCD onto SCET rewritten as:

$$\langle Q_i \rangle = T_i \langle \mathcal{O}^{\text{QCD}} \rangle + T'_i \langle \mathcal{O}'^{\text{QCD}} \rangle + \sum_{a>1} \left[H_{ia} \langle \mathcal{O}_a \rangle + H'_{ia} \langle \mathcal{O}'_a \rangle \right]$$

$$\hookrightarrow \quad \begin{pmatrix} \hat{T}_i \\ \hat{T}'_i \end{pmatrix} = \begin{pmatrix} C_{\bar{q}q}C_{FF}^{\text{D}} & C_{\bar{q}q}C_{FF}^{\text{ND}} \\ C_{\bar{q}q}C_{FF}^{\text{ND}} & C_{\bar{q}q}C_{FF}^{\text{ND}} \end{pmatrix}^{-1} \begin{pmatrix} H_{i1} \\ H'_{i1} \end{pmatrix}$$

Final master formulas for the hard scattering kernels:

$$\begin{split} T_i^{(0)} &= A_{i1}^{(0)} , \qquad T_i^{(1)} = A_{i1}^{(1)\eta f} + Z_{ij}^{(1)} A_{j1}^{(0)} \\ T_i^{(2)} &= A_{i1}^{(2)\eta f} + Z_{ij}^{(1)} A_{j1}^{(1)} + Z_{ij}^{(2)} A_{j1}^{(0)} + Z_{\alpha}^{(1)} A_{i1}^{(1)\eta f} - \hat{T}_i^{(1)} \left[C_{FF}^{D(1)} + Y_{11}^{(1)} - Z_{ext}^{(1)} \right] \\ &- C_{FF}^{ND(1)} \hat{T}_i^{\prime(1)} + (-i) \delta m_b^{(1)} A_{i1}^{*(1)\eta f} + (-i) \delta m_c^{(1)} A_{i1}^{**(1)\eta f} - \sum_{b \neq 1} H_{ib}^{(1)} Y_{b1}^{(1)} \end{split}$$

Explicit calculation of NNLO vertex corrections to T^{I} :

Two-loop non-factorizable Feynman diagrams contributing to A^{(2)nf}_{i1}: [BBNS '01]

- about 70 two-loop diagrams;
- Laporta reduction based on IBP;
- 39 new MIs and solved using DEs in a canonical basis;
- Both UV and IR div. cancelled analytically, thus factorization established!

Multi-loop calculations in a nutshell: I

- Adopt the DR scheme with $D = 4 2\epsilon$, to regulate both the UV and IR div.; at two-loop order, UV and IR poles appear up to $1/\epsilon^2$ and $1/\epsilon^4$, respectively.
- Basis strategy and procedure:
 - perform the general tensor reduction via Passarino-Veltman ansatz, \implies thousands of scalar integrals, Passarino, Veltman '79]
 - reduce them to Master Integrals via Laporta algorithm based on IBP identities =>totally 42 MIs, [Tkachov '81; Chetyrkin, Tkachov '81; Laporta '01; Anastasiou, Lazopoulos '04]
 - calculate these MIs, very challenging as we need analytical results.
- Techniques used to calculate MIs: developed very rapidly in recent years;
 - standard Feynman/Schwinger parameterisation, only for very simpler MIs;
 - method of differential equations; [Kotikov '91; Remiddi '97; Henn '13]
 - Mellin-Barnes techniques;
 - method of sector decomposition, for numerical check!

Calculate the MIs in a canonical basis:

- Besides the known ones, 39 new MIs found and computed based on the DE approach in a canonical basis; [Huber, Kränkl '15]
- Choose an "optimal" basis of MIs, so that the DEs decouple order-by-order in ε expansion, and the dependence of MIs on the kinematic variables is factorised from that on the ε: [Henn, 1304.1806]

$$\frac{\partial}{\partial x_m} \vec{M}(\epsilon, x_n) = \epsilon A_m(x_n) \vec{M}(\epsilon, x_n)$$

- The above simplified form of DEs trivial to solve in terms of iterated integrals; [Bell, Huber '14]
- Together with boundary conditions, analytic results of the MIs obtained in terms of generalised HPLs (or Goncharov polylogarithms); [Maitre, 0703052]

The analytic results make it much easier to handel the threshold at $\bar{u}m_b^2 = 4m_c^2$ and the convolution integral $\int_0^1 duT^I(u)\phi(u);$ [Bell, Beneke, Huber, Li '15]

Predictions for $a_1(D^{(*)+}L^-)$:

• Convolution with the LCDA:

$$a_1(D^+L^-) = \sum_{i=1}^2 C_i(\mu) \int_0^1 du \left[\hat{T}_i(u,\mu) + \hat{T}'_i(u,\mu) \right] \Phi_L(u,\mu)$$

• Numerical results for $a_1(D^+K^-)$:

 $a_1(D^+K^-) = 1.025 + [0.029 + 0.018i]_{\text{NLO}} + [0.016 + 0.028i]_{\text{NNLO}}$

 $= (1.069^{+0.009}_{-0.012}) + (0.046^{+0.023}_{-0.015})i$

 $\sim 2\%$ correction to real part, $\sim 60\%$ to imaginary part.

both the NLO and NNLO contribute constructively to the LO result.

pole (blue) and $\overline{\text{MS}}$ running (red) for $m_{b,c}$;

Xin-Qiang Li (CCNU)

Predictions for class-I decays:

	Brs ($\times 10^{-}$	³ for $b \rightarrow$	\cdot <i>cūd</i> and \times	10^{-4} for	$b \to c \bar{u} s$ t	ransitions c	of $\bar{B}_{(s)} \rightarrow$	$D_{(s)}^{(*)+}L^{-}$	decays:
--	-----------------------	----------------------------------	---------------------------------	---------------	-----------------------	--------------	--------------------------------	-----------------------	---------

			()	(3)
Decay mode	LO	NLO	NNLO	Exp.
$\bar{B}_d \to D^+ \pi^-$	3.58	$3.79^{+0.44}_{-0.42}$	$3.93^{+0.43}_{-0.42}$	2.68 ± 0.13
$ar{B}_d o D^{*+}\pi^-$	3.15	$3.32^{+0.52}_{-0.49}$	$3.45^{+0.53}_{-0.50}$	2.76 ± 0.13
$\bar{B}_d o D^+ ho^-$	9.51	$10.06^{+1.25}_{-1.19}$	$10.42^{+1.24}_{-1.20}$	7.5 ± 1.2
$ar{B}_d o D^{*+} ho^-$	8.45	$8.91^{+0.74}_{-0.71}$	$9.24 {}^{+0.72}_{-0.71}$	6.0 ± 0.8
$\bar{B}_s \to D_s^+ \pi^-$	4.00	$4.24^{+1.32}_{-1.15}$	$4.39^{+1.36}_{-1.19}$	3.04 ± 0.23
$ar{B}_s o {D^*_s}^+ \pi^-$	2.05	$2.16^{+0.54}_{-0.49}$	$2.24 {}^{+0.56}_{-0.50}$	2.0 ± 0.5
$ar{B}_s o D_s^+ ho^-$	10.31	$10.91^{+3.46}_{-3.02}$	$11.30^{+3.56}_{-3.11}$	7.0 ± 1.5
$ar{B}_s o {D^{*+}_s} ho^-$	5.86	$6.18^{+1.38}_{-1.28}$	$6.41^{+1.42}_{-1.31}$	10.2 ± 2.5
$\bar{B}_d \to D^+ K^-$	2.74	$2.90^{+0.33}_{-0.31}$	$3.01^{+0.32}_{-0.31}$	1.97 ± 0.21
$\bar{B}_d \to D^{*+}K^-$	2.37	$2.50^{+0.39}_{-0.36}$	$2.59^{+0.39}_{-0.37}$	2.14 ± 0.16
$\bar{B}_d \rightarrow D^+ K^{*-}$	4.79	$5.07 {}^{+0.65}_{-0.62}$	$5.25^{+0.65}_{-0.63}$	4.5 ± 0.7
$\bar{B}_d \to D^{*+} K^{*-}$	4.30	$4.54^{+0.41}_{-0.40}$	$4.70^{+0.40}_{-0.39}$	_

• Our predictions generally come out higher than the exp. data, especially for $\bar{B}_d \to D^{(*)+}\pi^-$ and $\bar{B}_d \to D^{(*)+}\rho^-$;

For \overline{B}_s decays, our predictions still plagued by larger uncertainties from $B_s \to D_s^{(1)}$ transition form factors.

Xin-Qiang Li (CCNU)

Test of factorization in class-I decays:

Free from FFs uncertainties and particularly clean:

[Bjorken, '89; Neubert and Stech, '97]

$$R_L^{(*)} \equiv \frac{\Gamma(\bar{B}_d \to D^{(*)+}L^-)}{d\Gamma(\bar{B}_d \to D^{(*)+}\ell^-\bar{\nu}_\ell)/dq^2 \mid_{q^2 = m_L^2}} = 6\pi^2 |V_{ij}|^2 f_L^2 |a_1(D^{(*)+}L^-)|^2 X_L^{(*)}$$

 $X_V = X_V^* = 1$ for a vector or axial-vector meson, for a pseudoscalar $X_L^{(*)}$ deviates from 1 below the percent level;

$ a_1(D^{(*)+}L^-) $	LO	NLO	NNLO	Exp.
$ a_1(D^+\pi^-) $	1.025	$1.054 {}^{+0.022}_{-0.020}$	$1.073^{+0.012}_{-0.014}$	0.89 ± 0.05
$ a_1(D^{*+}\pi^-) $	1.025	$1.052 {}^{+0.020}_{-0.018}$	$1.071 {}^{+0.013}_{-0.014}$	0.96 ± 0.03
$ a_1(D^+\rho^-) $	1.025	$1.054 {}^{+0.022}_{-0.019}$	$1.072^{+0.012}_{-0.014}$	0.91 ± 0.08
$ a_1(D^{*+}\rho^-) $	1.025	$1.052^{+0.020}_{-0.018}$	$1.071^{+0.013}_{-0.014}$	0.86 ± 0.06
$ a_1(D^+K^-) $	1.025	$1.054 {}^{+0.022}_{-0.019}$	$1.070^{+0.010}_{-0.013}$	0.87 ± 0.06
$ a_1(D^{*+}K^-) $	1.025	$1.052 {}^{+0.020}_{-0.018}$	$1.069 {}^{+0.010}_{-0.013}$	0.97 ± 0.04
$ a_1(D^+K^{*-}) $	1.025	$1.054 {}^{+0.022}_{-0.019}$	$1.070^{+0.010}_{-0.013}$	0.99 ± 0.09
$ a_1(D^+a_1^-) $	1.025	$1.054 {}^{+0.022}_{-0.019}$	$1.072^{+0.012}_{-0.014}$	0.76 ± 0.19

• Our predictions result in an essentially universal value of $|a_1(D^{(*)}+L^-)| \simeq 1.07 (1.05)$ at NNLO (NLO), being consistently higher than the central values favoured by the current exp. data!

Xin-Qiang Li (CCNU)

Test of factorization and SU(3)symmetry:

• Ratios of
$$\overline{B}_{d,s} \to D_{s,d}^{(*)+}L^-$$
 decay rates:

[Neubert, Stech, '97; Fleischer, Serra, Tuning, '04, '12]

 $\mathcal{A}(\bar{B}^0_d \to D^{(*)+}\pi^-) = \text{Tree} + \text{W-exchange} \,, \quad \mathcal{A}(\bar{B}^0_d \to D^{(*)+}K^-) = \text{Tree}$

 \hookrightarrow useful to gain information on W-exchange contribution, to test factorization hypothesis and the SU(3) relations;

Ratios	LO	NLO	NNLO	Exp.
$\frac{\operatorname{Br}(\bar{B}_d \to D^+ \rho^-)}{\operatorname{Br}(\bar{B}_d \to D^+ \pi^-)}$	2.654	$2.653^{+0.163}_{-0.158}$	$2.653^{+0.163}_{-0.158}$	2.80 ± 0.47
$\frac{\operatorname{Br}(\bar{B}_d \to D^+ K^{*-})}{\operatorname{Br}(\bar{B}_d \to D^{*+} K^{-})}$	2.019	$2.026^{+0.404}_{-0.358}$	$2.023^{+0.403}_{-0.358}$	2.103 ± 0.363
$\frac{\operatorname{Br}(\bar{B}_d \to D^+ K^-)}{\operatorname{Br}(\bar{B}_d \to D^+ \pi^-)}$	0.077	$0.077 {}^{+0.002}_{-0.002}$	$0.077^{+0.002}_{-0.002}$	0.074 ± 0.009
$\frac{\operatorname{Br}(\bar{B}_d \to D^{*+}K^{-})}{\operatorname{Br}(\bar{B}_d \to D^{*+}\pi^{-})}$	0.075	$0.075 {}^{+0.002}_{-0.002}$	$0.075^{+0.002}_{-0.002}$	0.078 ± 0.007
$\frac{\operatorname{Br}(\bar{B}_s \to D_s^+ \pi^-)}{\operatorname{Br}(\bar{B}_d \to D^+ K^-)}$	14.67	$14.67^{+1.34}_{-1.28}$	$14.67^{+1.34}_{-1.28}$	15.43 ± 2.02
$\frac{\operatorname{Br}(\bar{B}_{S} \to D_{S}^{+} \pi^{-})}{\operatorname{Br}(\bar{B}_{d} \to D^{+} \pi^{-})}$	1.120	$1.120^{+0.109}_{-0.104}$	$1.120^{+0.109}_{-0.104}$	1.134 ± 0.102

General consistency indicates small impact of the W-exchange topology and of nonfac. SU(3)-breaking effects!

With LQCD for $B_{(s)} \rightarrow D_{(s)}$ FFs, the last two allow precise measurement of fragmentation functions f_s/f_d !

Xin-Qiang Li (CCNU)

Comments on the power correction in class-I decays:

There exist power-suppressed corrections from spectator-scattering and W-exchange annihilation:

- Our findings: our predictions for non-lep. to semi-lep ratios larger than the data, while for non-lep. ratios agree well with data;
- Possibility I: non-negligible power correction stemming from spectator-scattering and W-exchange annihilation that is negative in sign and 10 15% in size on the amplitude level;

 \hookrightarrow render the factorization test via non-lep. to semi-lep ratios better, but cancel out in the non-lep. ratios;

- Possibility II: to reduce the values of $|V_{cb}| \times \text{FFs}$ by $\sim 10\%$;
 - \hookrightarrow render the Brs close to the current data, while keep the non-lep. ratios unchanged;

Predictions for $\Lambda_b \to \Lambda_c^+ L^-$ decays:

• At the LHC, Λ_b production constitutes $\sim 20\%$ of b-hadrons;

[LHCb, arXiv:1111.2357]

■ Due to S = ¹/₂, its decays complementary to B-meson decays; → a new testing ground for different QCD models and factorization assumptions used in B-meson case.

Decay mode	LO	NLO	NNLO	Exp.
$\Lambda_b \to \Lambda_c^+ \pi^-$	2.60	$2.75^{+0.53}_{-0.53}$	$2.85 {}^{+0.54}_{-0.54}$	$4.30^{+0.36}_{-0.35}$
$\bar{B}_d o D^+ \pi^-$	3.58	$3.79^{+0.44}_{-0.42}$	$3.93^{+0.43}_{-0.42}$	2.68 ± 0.13
$\Lambda_b \to \Lambda_c^+ K^-$	2.02	$2.14 {}^{+0.40}_{-0.39}$	$2.21^{+0.40}_{-0.40}$	3.42 ± 0.33
$\bar{B}_d \to D^+ K^-$	2.74	$2.90^{+0.33}_{-0.31}$	$3.01^{+0.32}_{-0.31}$	1.97 ± 0.21
$\frac{\operatorname{Br}(\Lambda_b \to \Lambda_c^+ \mu^- \bar{\nu})}{\operatorname{Br}(\Lambda_b \to \Lambda_c^+ \pi^-)}$	18.88	$17.87 \substack{+2.31 \\ -2.33}$	$17.25^{+2.19}_{-2.18}$	$16.6^{+4.1}_{-4.7}$
$\frac{\text{Br}(\Lambda_b \to \Lambda_c^+ K^-)}{\text{Br}(\Lambda_b \to \Lambda_c^+ \pi^-)} \ (\%)$	7.77	$7.77^{+0.19}_{-0.18}$	$7.77 \substack{+0.19 \\ -0.18}$	7.31 ± 0.23
$\frac{\operatorname{Br}(\Lambda_b \to \Lambda_c^+ \pi^-)}{\operatorname{Br}(\bar{B}_d \to D^+ \pi^-)}$	0.73	$0.73^{+0.16}_{-0.15}$	$0.73^{+0.16}_{-0.15}$	3.3 ± 1.2

- For mesonic decays, larger than data, but for baryonic decays, lower than data, and NNLO has a right directions!
- From the ratios, non-fact. effects should be small in these Λ_b decays;

Xin-Qiang Li (CCNU)

Conclusion and outlook

- In QCDF/SCET framework, the 2-loop vertex corrections to colour-allowed tree topology a_1 for class-I decays $\bar{B}_{(s)} \to D_{(s)}^{(*)+} L^-$ and $\Lambda_b \to \Lambda_c^+ L^-$ were calculate;
- For the colour-allowed tree amplitude *a*₁, the NNLO contributions yield a positive shift, sizable for its imaginary part, but small for its real part and its magnitude;
- The dependence on μ gets reduced for the real part, but does not occur for the imaginary part; a quasi-universal $|a_1|$ is predicted in QCDF even up to the NNLO accuracy;
- For \overline{B}_d decays, the central values are in general higher compared to the exp. data; For \overline{B}_s decays, our predictions are still plagued by large uncertainties from form factors;
- For the baryonic decays, our predictions turn out to be 20 30% smaller than the exp. data; Interesting to understand the reason for this difference in the \bar{B}_d and the Λ_b decays;
- $\Lambda_b \to \Lambda_c^+ L^-$ decays provide another testing ground for different QCD models and factorization assumptions used in *B*-meson case;

