中国物理学会高能物理分会第十二届全国粒子物理学术会议 中国科学技术大学,8月22-26日

Quarkonium Measurements @RHIC-STAR

Zebo Tang (唐泽波)

Department of Modern Physics, University of Science and Technology of China (USTC)

State Key Laboratory of Particle Detection and Electronics

Outline

- Introduction
- J/ψ production in p+p collisions
 - p_T differential cross-section
 - Polarization
 - Yield vs. event activity
- Quarkonium production in Heavy-ion collisions
 - $J/\psi R_{AA} vs p_T$
 - $J/\psi R_{AA}$ vs. centrality
 - Upsilon
- Summary

Quarkonium production mechanism in p+p

Approximation: on-shell pair + hadronization

$$\sigma_{AB\to J/\psi}(P_{J/\psi}) \approx \sum_{n} \int dq^2 \left[\sigma_{AB\to [Q\bar{Q}](n)}(q^2) \right] F_{[Q\bar{Q}(n)]\to J/\psi}(P_{J/\psi}, q^2)$$

NRQCD factorization:

$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \langle \mathcal{O}^{H}(n) \rangle \xrightarrow{p_{\perp}(\text{GeV})} STAR \text{ Data:} PRC80, 041902 (2009), PLB722, 55 (2013)$$

Matrix elements obtained from global fitting

NLO NRQCD:

 10^{4}

10-

 10^{-2}

 $d^2\sigma/dp_\perp/dy (nb/GeV)$

Y.-Q.Ma, K.Wang, and K.T.Chao, PRD 84, 114001 (2011)

10

CGC+NROCD

For J/

ATLAS.lvl<0.75

0.1×STAR, |y|<1

0.2×LHCb,2<v<4.5

0.1×PHENIX, y<0.35

0.01×PHENIX,1.2

25

ALICE, y <0.9

100×LHCb,2<y<4.5

NLO NRQCD For U

2 TeV for RHIC

TeV for LHC

CGC+NRQCD:

Gluon distribution described by CGC

CGC+NRQCD:

Y.-Q. Ma and R. Venugopalan, PRL113, 192301 (2014)

全国粒子物理大会,合肥, 8/22-26,2016

Quarkonium in heavy-ion collisions

Hot nuclear matter effects (QGP effects)

- Suppression due to color-screening
- Enhancement due to (re)generation

Probe the properties of QGP

全国粒子物理大会,合肥, 8/22-26, 2016

RHIC-STAR Experiment

• Mid-rapidity detector: $|\eta| < 1, 0 < \phi < 2\pi$

- **TPC**: precisely measure momentum and energy loss
- **TOF**: measure time-of-flight
 - Installed 100% in 2010
 - Precise timing for PID
- **BEMC**: trigger on and identify electrons
- MTD (|η|<0.5) : trigger on and identify muons
 - Installed 63% in 2013 and 100% in 2014 behind magnet
 - Precise timing measurement ($\sigma \sim 100 \text{ ps}$)
 - Dimuon trigger for quarkonia

J/\u03c6 in 500 GeV p+p

Zebo Tang (USTC)

全国粒子物理大会,合肥, 8/22-26,2016

J/\u03c6 in 200 GeV p+p (2012 data)

- New data consistent with PHENIX and STAR previous results, but with better precision
- Described by CGC+NRQCD and NRQCD, small tension at low-p_T

Charmonium in p+p at 13 TeV

LHC new data described by CGC+NRQCD and NRQCD

J/\ Polarization

J/ψ polarization: more constraints for the production mechanism models

Zebo Tang (USTC)

全国粒子物理大会,合肥, 8/22-26,2016

J/\u03c8 polarization at RHIC-STAR

NLO NRQCD: Phys. Rev. Lett. 108 (2012) 242004, Phys.Rev. D90 (2014) 1, 014002, Phys.Rev.Lett 112 (2014) 18, JHEP 1505 (2015) 103 and private communication

- Towards to longitudinal polarization at moderate p_T
- Similar trend observed in 200 and 500GeV
- Data can help to constrain theoretical calculations

Hard process vs. Soft process

- Faster increase of open charm than charged hadron observed at LHC
- Similar trend for inclusive J/ψ

Models: PYTHIA8

- Linear increase thanks to Multi-Parton-Interaction (MPI)
- Underestimate yield at large multiplicity

Percolation

• Reduction of effective number of color sources due to coherence at high density

EPOS

- Linear increase due to #MPI
- Stronger increase due to hydro. evolution

J/ψ vs. Event activity @ RHIC-STAR

- Stronger-than-linear growth for J/ψ at both energies
- Different trends for low and high-p_T

Compare to Model

- Both PYTHIA8 and percolation model reproduce trend qualitatively
- Pushing to higher multiplicity bin for 500GeV data

Compare to LHC data

Similar trends from 200GeV, 500GeV to 7 TeV

Seminar trend as D mesons

Challenge for model (like EPOS+Hydro.) to explain

$J/\psi p_T$ spectra in 200 GeV Au+Au

Di-electron: STAR PLB 722 (2013) 55 STAR PRC 90, 024906 (2014)

- First mid-rapidity measurement of J/ ψ yield in Au+Au collisions via the di-muon channel for 0 < p_T < 15 GeV/c
- Consistent with the published di-electron results using Run10 data over the entire kinematic range.

 $\mathbf{R}_{\mathbf{A}\mathbf{A}}$ vs. $\mathbf{p}_{\mathbf{T}}$

 Consistent with di-electron channel results for the entire p_T range within uncertainties in all centralities

Compare to LHC

- Less suppressed at LHC in low-p_T → larger regeneration contribution due to higher charm cross-section
- More suppressed at LHC in high-p_T → larger dissociation rate due to higher temperature and shadowing effect

Zebo Tang (USTC)

Compare to transport models

• Transport models including **dissociation and regeneration effects** qualitatively describe p_T dependence shape

R_{AA} vs. centrality

- STAR data are consistent with PHENIX with better statistical precision for $p_T > 0$ GeV/c
- Low p_T: more suppressed at RHIC in central collisions
- High p_T : less suppressed at RHIC in all centralities

Compare to transport models

- Low p_T: both models can describe centrality dependence at RHIC, but tends to overestimate suppression at LHC
- High p_T: there is tension among models and data

Upsilon

• Signs of Υ (2S+3S) from the di-muon channel

- Challenging for di-electron channel due to Bremsstrahlung

• Hint of less melting of $\Upsilon(2S+3S)$ at RHIC than at LHC

Summary

 J/ψ production in p+p collisions:

- p_T spectra in p+p collisions well understood (CGC, NRQCD)
- Polarization more sensitive to different theoretical treatments
- Yield vs. event activity provides a new tool

Quarkonium production in heavy-ion collisions:

- Consistent with dissociation+regeneration picture for J/ψ
- Details in transport models matter
- Hints of less melting of $\Upsilon(2S+3S)$ at RHIC than LHC observed

Zebo Tang (USTC)

J/ψ signals from MTD in Au+Au

ψ(2s) Feeddown

- $\psi(2S)$ to J/ ψ ratio increases with p_T , consistent with world data
- No collisions energy dependence seen with current precision
- $(0.032 \pm 0.010) * 6\%/0.8\% * 61\% \sim (15 \pm 5)\%$ feeddown contribution at $4 < p_T < 12 \text{ GeV/c}$

J/\u03c6 polarization in Au+Au

J/ψ polarization in heavy-ion collisions

• Screening of non-perturbative physics?

PRC 68, 061902 (2003)

- (Chiral) Magnetic effect?
- Sequential suppression?
- Polarization parameters should be modified by hot, dense medium

- Analysis is ongoing
- Centrality dependence seen in 2011 data
- 2014+2016 data will significantly improve

Curve from Joao Seixas, workshop AFTER@ECT