中国物理学会高能物理分会第十二届全国粒子物理学术会议

基于 GEM 探测器的 阻性阳极读出方法研究

董明义、翰旭东、赵逸琛、修青磊、欧阳群

中國科學院為能物明湖完施 Institute of High Energy Physics Chinese Academy of Sciences

• 研究背景

- 阻性阳极的设计与优化
- 探测器样机研制与测试
- 总结展望

研究背景

- 传统气体探测器, 如丝室等
 - 造价低廉、增益大、物质量小、性能可调
 - 位置分辨率、计数率、老化等改进空间不大
 - 难以适应高能量、高亮度粒子物理实验需求
- 新型微结构气体探测器 MPGD
 - Micro-Pattern Gaseous Detector
 - 光刻技术的进步带来新的思路
 - 保留传统气体探测器性能优点
 - 位置分辨率和计数率能力极大提高
 - 典型代表
 - ♦ MicroMegas
 - Gas Electron Multiplier

- GEM 探测器
 - 粒子物理实验
 - ♦ HERA-B、COMPASS、LHCb、TOTEM、 KLOE-2、NA61/SHINE ······
 - X射线、中子成像等领域
- 高密度电子学通道数
 - 信号横向扩散小
 - ◆ 1 3 mm
 - ◆ 条或块读出 + 重心法 ⇒ Pitch < 1 mm
 - 高位置分辨率需求和潜力
 - ♦ COMPASS
 - $ightarrow \sigma = 78.7 \ \mu m \Rightarrow Pitch = 400 \ \mu m$

2

2016年8月25日

阻性阳极读出方法

- 电子学角度 🎍 🎍
 - ASIC \Rightarrow APV25
- 探测器角度
 - 锯齿读出 Zigzag 🝰
 - 开关电容阵列 Switch Array
 - 延迟线读出 Delay Line 🍰
 - 楔条阳极读出 WSA
 - 阻性阳极读出 Resistive Anode
 - ◆ Pad: 高方阻
 - ◆ Strip: 低方阻
 - ◆ Node: 接前放
 - 🔸 阵列扩展 🏼 🍐 🍰

Resistive Anode GEM

- TGEM 原理探测器
 - ◆ 16 路, 3×3 Cell
- 阻性阳极的优化
 - ◆ 块条阻值比
 - ◆ 方阻均匀性
 - ◆ Cell 尺寸……

2016年8月25日

IHEP 板极电荷灵敏前放 -- 8通道

COMPASS 使用的 APV25 芯片 — 128 通道

X [Grid]

阻性阳极优化: Pad和Strip阻值比(模拟)

• 阻值定义: $R_P = R_{\Box P}$; $R_S = R_{\Box S} \cdot \frac{L}{W}$

- 块条阻值比越大, 枕形失真越小; 块条阻值比大于 5 时, 枕形失真已经很小了
 - 块条阻值比 = 0.025,对应方阻比为 1:1, 电荷损失率 > 40% ⇒ 无低阻条阻挡情况
 - ▶ 块条阻值比 = 5.000,对应方阻比为 200:1,电荷损失率~3% ⇒ 方阻设计的参考值
 2016年8月25日 juxd@ihep.ac.cn

阻性阳极优化: Pad和Strip阻值比 (实验)

2016年8月25日

juxd@ihep.ac.cn

X346 (mm)

阻性阳极优化: Pad方阻均匀性(模拟)

2016年8月25日

阻性阳极优化: Pad方阻均匀性 (实验)

• 实验结果

- 除个别Cell外,方阻不均匀性 < 20%
- 良好的探测器非线性 ~0.34%,表示具有好的成像均匀性
- 厚膜电阻工艺限制: 5%~30%
- 方阻不均匀性的参考值为: < 20%

2016年8月20日

阻性阳极优化: Pad尺寸与位置分辨率

6 mm×6 mm

 $8 \text{ mm} \times 8 \text{ mm}$

$10 \text{ mm} \times 10 \text{ mm}$

W _{Cell} (mm)	$\sigma_{\mathcal{C}}(\mu m)$	$\sigma_D(\mu m)$
6	103.4	66.7
8	112.2	80.0
10	145.1	109.9

- 实验结果
 - Pad尺寸越小,位置分辨率越好
 - 6 mm × 6 mm 的 Cell $\Rightarrow \sigma < 105 \,\mu m$
 - Cell尺寸的确定
 - ◆ 位置分辨率需求
 - ◆ 电子学通道数
 - Strip宽度的影响

2016年8月25日

RAGEM样机: 阻性阳极读出板

N _{Cell} (1-side)	W _{Pad} (mm)	W _{Strip} (mm)	$\frac{R_{\Box P}}{(\mathbf{k}\Omega/\Box)}$	$\frac{R_{\Box S}}{(\mathbf{k}\Omega/\Box)}$	Ф _{Hole} (mm)	T _{Ceramic} (mm)
11	7.85	0.25	200	1	0.3	1

2016年8月25日

RAGEM样机: 整体设计

能量范围: 5~15 keV

RAGEM样机: 能量分辨率与增益均匀性

Energy Spectrum of Fe-55@Ar/CO2(70/30), All nodes of Pad 5_5

juxd@ihep.ac.cn

RAGEM样机: 探测器位置分辨率

- 基本原理
 - 实验分布M(x')表示为真实分布T(x)与探测器位置分辨函数R(x,x')的卷积
 - $M(x') = T(x) \otimes R(x, x') = \int_{-\infty}^{\infty} T(x) R(x, x') dx$
 - $R(x, x') = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-x')^2}{2\sigma^2}\right]$
- 双高斯拟合法
 - 假设真实分布为δ分布
 - $M(x') = T(x) \otimes R(x, x')$ = $\int_{-\infty}^{\infty} \delta(x - x_0) R(x, x') dx$ = $R(x_0, x')$
 - X光机 + 40 µm Slit
 - X光机和狭缝的效应当做本底
 - $\sigma = 107.2 \,\mu m @ 8 \,mm \,Cell$
 - $\overline{\sigma} < 120 \, \mu m @ 8 \, mm \, Cell$

$$f(x) = a \cdot g_S(x) + (1 - a) \cdot g_B(x)$$
$$g_S(x) = N(\mu_S, \sigma_S)$$
$$g_B(x) = N(\mu_B, \sigma_B)$$
$$\sigma^2 = \int (x - \mu)^2 f(x) dx = a \cdot \sigma_S^2 + (1 - a) \cdot \sigma_B^2$$
$$(\mu_B = \mu_S)$$

2016年8月25日

RAGEM样机: 探测器位置线性

2016年8月25日

RAGEM样机: 探测器二维成像能力

钥匙成像

3D打印的字母成像

RAGEM样机:节省电子学能力

- 数字读出
 - $\sigma = \frac{L}{\sqrt{12}}$
- 模拟读出,重心法
 - $\sigma = \frac{L}{a}$
 - a > √12
- COMPASS 实验数据
 - Strip
 - $\sigma \sim 80 \ \mu m \ @ 400 \ \mu m$ Pitch
 - Pad
 - $\sigma \sim 100 \ \mu m \ @ \ 1000 \ \mu m$ Pitch

• RAGEM 实验数据

- Resistive Anode
 - σ~120 μm
 @ 8000 μm Pitch

M. Altunbas et al. Nucl. Instrum. Meth., A490:177 - 203, 2002. A. Austregisilioet al. Nucl. Phys. Proc. Suppl., 197:113 - 116, 2009.

		$\sigma - \frac{L}{\sigma}$	$\sigma=$ 120 $\mu \mathrm{m}$			$\sigma=300~\mu{ m m}$		
Width Chanls	公式	$a = \frac{b - a}{a}$	50 (mm)	100 (mm)	200 (mm)	50 (mm)	100 (mm)	200 (mm)
N _{Strip}	$n \times 2$	5	166	334	666	66	134	266
N _{Resist}	$(n+1)^2$	66.7	49	169	676	16	36	121
N _{Pad}	<i>n</i> ²	10	1764	6889	27889	289	1089	4489

总结和展望

总结

- 研究了阻性阳极读出方法用于 GEM 探测器的可行性
- 利用原理探测器研究了阻性阳极板各参数对探测器性能的影响
- 制作了100×100 mm²的探测器样机,用铁源和X光机对其进行了测试
 - ◆ 好的能量分辨率(~20%)和好的增益均匀性 (< 7%)
 - ◆ 好的位置分辨率(~120 μm @ 8 mm Cell)和好的位置线性 (< 1.1%)
 - ◆ 良好的二维成像性能
 - ◆ 有效节省电子学
 - ▶ 当前位置分辨率和灵敏面积下,相较条读出结构,节省约一半电子学
- 展望
 - 为 RAGEM 匹配一套集成度较高的电子学,进行计数率测量和同步辐射实验
 - 这种读出方法适用于相似结构的其它探测器,已在<mark>厚GEM</mark>探测器上进行了尝试
 - 进一步增大Cell尺寸,用于中子成像等(36路@20×20mm² Cell@100mm² Area)

2016年8月25日

C.W. Gear. USAEC Conf-670301:552, 1969.
T. Doke et al. Nucl. Instrum. Meth., 261(3):605 - 609, 1987.
A. Orthen et al. Nucl. Instrum. Meth., 478(12):200 - 204, 2002.
M. Y. Dong et al. Chin. Phys. C., 37:26002, 2013.
Q. L. Xiu et al. Chin. Phys. C., 37:106002, 2013.
X.D. Ju et al., Chin. Phys.C.,40:86004,2016.

RAGEM样机: 探测器计数率分析

- 单Cell总计数率
 - 三套电子学系统
 - 目前最高为 5 kHz
- - RC 时间常数
 - $\tau \approx 400 \text{ ns} @ R_P = 200 \text{ K} \Omega / \Box @ W_{Cell} = 8 \text{ mm}$
 - 防止脉冲堆积,间隔三倍时间常数 ⇒ 4 × 10⁶ Hz
 - 示波器信号波形和模拟结果
 - ◆ 信号上升时间 ⇒ >100 kHz
 - ◆ 2 μs 时间窗 ⇒ 500 kHz
- 单位面积内上的计数率
 - 多次击中问题
 - 泊松分布
 - $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$
 - $\lambda = \varepsilon \cdot \Delta t \cdot s \cdot I_0$
 - 3×3 Cell, P(k > 1) = 1.8% @ 100 kHz

Electronics	CAMAC	VME	704GEM
Rate (Hz)	~ 100	> 3 <i>k</i>	> 5 <i>k</i>

Multi-hit Percent vs Beam Density

2016年8月25日