

AMS is a large international collaboration

AMS: A TeV precision, multipurpose spectrometer

TRD TOF Identify e+, e-Particles and nuclei are defined Z, E by their charge (Z) and energy (E ~ P) The Course of the Party Magnet 1 Silicon Tracker TRD Z, P TOF **RICH** TOF RICH Z, E **ECAL** E of e⁺, e⁻ Z and P~E are measured independently by the Tracker, RICH, TOF and ECAL

Transition Radiation Detector

20 layers: fleece radiator and proportional tubes

TRD estimator = $-\ln(P_e/(P_e + P_p))$

Time of Flight System

Measures Velocity and Charge of particles

Ring Imaging CHerenkov (RICH)

Measurement of Nuclear Charge (Z) and its Velocity to 1/1000

Electromagnetic Calorimeter

Provides a precision, 17 X₀, TeV, 3-dimensional measurement of the directions and energies of electrons and positrons, seperate e[±] from protons

Extensive tests and calibration at CERN

In >5 years on ISS,

AMS has collected ~90 billion cosmic rays.

To match the statistics,

systematic error studies have become important.

The Search for the Origin of Dark Matter

Collisions of Dark Matter (neutralinos, χ) will produce a signal of e+, \overline{p} , ...

above the background from the collisions of "ordinary" cosmic rays

M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001; J. Ellis, 26th ICRC Salt Lake City (1999) astro-ph/9911440;

First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV

M. Aguilar, 32,20 G. Alberti, 42,43 B. Alpat, 42 A. Alvino, 42,43 G. Ambrosi, 42 K. Andeen, 28 H. Anderhub, 54 L. Arruda, 30

6.8 million events

Dear Sam,

this is just to let you know that your article the first AMS data has been selected in

our 2013 APS Physics Highlights (http://physics.aps.org/articles/v6/139).

Congratulation on this work, which has generated a lot attention among our readers, the press and the scientific community.

Best regards,

Matteo

--

Matteo Rini, PhD Deputy Editor, Physics

mrini@aps.org
http://physics.aps.org

High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station

10.9 million e+ and e- events

6. The expected rate at which it falls beyond the turning point.

AMS, Electron Flux and the Positron Flux

The Electron Flux and the Positron Flux

Observations:

- 1. The electron flux and the positron flux are different in their magnitude and energy dependence.
- 2. Both spectra cannot be described by single power laws.
- 3. The spectral indices of electrons and positrons are different.
- 4. Both change their behavior at ~30GeV.
- 5. The rise in the positron fraction from 20 GeV is due to an excess of positrons, not the loss of electrons (the positron flux is harder).

AMS Results: (e+ + e-) flux

Spectral Indices of electrons+positrons

The Search for the Origin of Dark Matter

Collisions of Dark Matter (neutralinos, χ) will produce a signal of e+, \overline{p} , ...

above the background from the collisions of "ordinary" cosmic rays

M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001; J. Ellis, 26th ICRC Salt Lake City (1999) astro-ph/9911440;

AMS p̄/p results

The Search for the Origin of Dark Matter

To identify the Dark Matter signal we need

to measure the e+, e- and p signal accurately until 2024.

To understand background, we need precise knowledge of:

- 1. The cosmic ray fluxes (p, He, C, ...)
- 2. Propagation and Acceleration (Li, B/C, ...)

AMS: Multiple Measurements of Nuclear Charge

Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

The isotropic protonflux Φ_i for the *i*th rigidity bin $(R_i, R_i + \Delta R_i)$ is:

$$\Phi_i = \frac{\mathbf{N}_i}{\mathbf{A}_i \, \mathbf{\varepsilon}_i \, \mathsf{T}_i \, \Delta \mathsf{R}_i}$$

To match the statistics of 300 million events, extensive systematic errors studies have been made.

- 1) $\sigma_{\text{trig.}}$:trigger efficiency
- 2) $\sigma_{acc.}$:
 - a. the acceptance and event selection
 - b. background contamination
 - c. geomagnetic cutoff

- **3)** σ unf:
 - a. unfolding
 - b. the rigidity resolution
- 4) σ _{scale}.: the absolute rigidity scale function

TABLE I: The proton flux Φ as a function of rigidity

Rigidity [GV]	Φ	$\sigma_{ m stat.}$	$\sigma_{\rm trig.}$	$\sigma_{\rm acc.}$	$\sigma_{\mathrm{unf.}}$	$\sigma_{ m scale}$	$\sigma_{ m syst.}$
100 - 108	(4.085	0.007	0.006	0.040	0.035	0.022	$0.058) \times 10^{-2}$
108 - 116	(3.294)	0.007	0.005	0.033	0.028	0.018	$0.047) \times 10^{-2}$
116 - 125	(2.698	0.006	0.004	0.027	0.023	0.016	$0.039) \times 10^{-2}$
125 - 135	(2.174)	0.005	0.004	0.022	0.019	0.013	$0.032)\!\times\! 10^{-2}$

AMS proton flux

AMS proton flux

two power laws: R^{γ} , $R^{\gamma+\Delta\gamma}$ with a characteristic transition rigidity R_0 and

AMS proton spectral index variation: Model independent measurement of spectral index

AMS proton flux [m⁻²sr⁻¹sec⁻¹GeV^{1.7} **AMS-02** 14 ATIC-2 **BESS-Polar II** 12 **CREAM PAMELA** 10 8 6 $Flux \times E_K^{2.7}$ 2 Kinetic Energy (E_k) [GeV] 10³ 10² 10

Accurate measurement of the flux of nuclei on the ISS

A new method:

To measure the flux of nuclei (He, Li, Be, B, C, O, ...) accurately, we need to know the interaction cross section of these nuclei with the materials in AMS.

Unfortunately, the interactions of nuclei with the materials in AMS could not be measured on the ground. This limits the accuracy to which we could measure the fluxes.

On ISS we have now a method to measure these interactions in space accurately.

Measuring the interactions of nuclei within AMS when AMS is flying horizontal

First, we use the seven inner tracker layers, L2-L8, to define beams of nuclei: He, Li, Be, B, ...

Second, we use left-to-right particles to measure the nuclear interactions in the lower part of the detector.

Third, we use right-to-left particles to measure the nuclear interactions in the upper part of detector.

AMS Measurement of He+C Cross Section

AMS Helium Flux

AMS Helium Flux AMS-02 ATIC-2 Flux × $E_K^{2.7}$ [m⁻²sr⁻¹sec⁻¹(GeV/n)^{1.7}] 0 0 0 5 7 8 9 8 **BESS-Polar** CREAM PAMELA Kinetic Energy (E_k) [GeV/n] 10 36

proton/He flux ratio

Lithium in Cosmic Rays

 Like B and Be, Li is produced by the spallation of heavier nuclei during their propagation. C, N, O,...Fe + ISM → Li → B, Be + ISM → Li

 Sensitive to CR propagation parameters (diffusion, convection, reacceleration...).

AMS Lithium flux – current status

Lithium flux with two power law fit

Slope changes at about the same rigidity as for protons and helium

Precise measurement of the rigidity spectra of B/C provides information on Cosmic Ray Interactions and Propagation **Carbon Fragmentation** to Boron R = 10.6 GV $Z_{TRK_L1} = 6.1$ front view $Z_{TRD} = 6.0$ 7 = 99The propagation of cosmic rays and their $Z_1 = 5.3$ interactions with the Interstellar Medium (ISM) is measured through the B/C ratio. $Z_{TRK\ IN}=4.8$ **HALO AMS DISK** $Z_{TOF_LOW} = 5.2$ $Z_{RICH}=5.1$

Boron and Carbon: Sample composition

AMS B/C Ratio

The latest AMS measurements of the positron fraction, the antiproton/proton ratio, the behavior of the fluxes of electrons, positrons, protons, helium, and other nuclei is providing new, precise, and unexpected information.

The accuracy and characteristics of the data, simultaneously from many different types of cosmic rays, will soon determine the true nature of the new phenomena we observe.

AMS physics for the lifetime of the Space Station

Accurate measurement (~1%) of Cosmic Rays to higher energies including:

- a. Continue the study of Dark Matter
- b. Search for the Existence of Antimatter
- c. Search for New Phenomena, ...

