The Latest Results from AMS on the International Space Station

USA

MIT - CAMBRIDGE
NASA GODDARD SPACE FLIGHT CENTER NASA JOHNSON SPACE CENTER UNIV. OF HAWAII
UNIV. OF MARYLAND - DEPT OF PHYSICS YALE UNIVERSITY - NEW HAVEN

FRANCE
LUPM MONTPELLIER LAPP ANNECY LPSC GRENOBLE

PORTUGAL
LAB. OF INSTRUM.LISBON

SPAIN CIEMAT - MADRID I.A.C. CANARIAS.

BRASIL

IFSC - SÃO CARLOS INSTITUTE OF PHYSICS

ITEP KURCHATOV INST.

AMS: A TeV precision, multipurpose spectrometer

TRD Identify $\mathrm{e}^{+}, \mathrm{e}^{-}$

Silicon Tracker

ECAL
E of $\mathrm{e}^{+}, \mathrm{e}^{-}$

Particles and nuclei are defined
TOF by their charge (Z) and energy (E ~ P)

Z, E

RICH
Z, E

Transition Radiation Detector

TRD estimator $=-\ln \left(P_{\mathrm{e}} /\left(P_{\mathrm{e}}+P_{\mathrm{p}}\right)\right)$

20 layers: fleece radiator and proportional tubes

Time of Flight System

Measures Velocity and Charge of particles

Ring Imaging CHerenkov (RICH)

Measurement of Nuclear Charge (Z) and its Velocity to $1 / 1000$

Electromagnetic Calorimeter

Provides a precision, $17 \mathrm{X}_{0}$, TeV , 3-dimensional measurement of the directions and energies of electrons and positrons, seperate $e^{ \pm}$from protons

Extensive tests and calibration at CERN

In >5 years on ISS,

AMS has collected $\mathbf{~ 9 0}$ billion cosmic rays.
To match the statistics,
systematic error studies have become important.

The Search for the Origin of Dark Matter

Collisions of. Dark Matter (neútialinos, χ) will produce a signal of - e+, $\overline{\mathrm{p}}, \ldots$

 aboye the background from the collisions of "ordinary" cosmic rays

M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001;
J. Ellis, 26th ICRC Salt Lake_City (1999) astro-ph/9911440;

© 0

First Result from the Alpha Magnetic Spectrometer on the International Space Station:
Precision Measurement of the Positron Fraction in Primary Cosmic Rays of $0.5-\mathbf{3 5 0} \mathbf{G e V}$

M. Aguilar, ${ }^{32,20}$ G. Alberti, ${ }^{42,43}$ B. Alpat, ${ }^{42}$ A. Alvino, ${ }^{42,43}$ G. Ambrosi, ${ }^{42}$ K. Andeen, ${ }^{28}$ H. Anderhub, ${ }^{54}$ L. Arruda, ${ }^{30}$

6.8 million events

Dear Sam,
this is just to let you know that your article the first AMS data has been selected in our 2013 APS Physics Highlights (http://physics.aps.org/articles/v6/139).

Congratulation on this work, which has generated a lot attention among our readers, the press and the scientific community.

Best regards,
Matteo

Matteo Rini, PhD
Deputy Editor, Physics
mrini@aps.org
http://physics.aps.org

High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of $0.5-500 \mathrm{GeV}$ with the Alpha Magnetic Spectrometer on the International Space Station
10.9 million e+ and e- events

2. The rate of increáse with energy

 3. The existence of sharp structure 4. The energy beyond which it ceases to increase.1. The energy at which it begins to incréase. 1

2. Isotfopy,
3. The rate at which it falls beyond the turning point.

4. The expected rate at which it falls beyond the turning point.

AMS, Electron Flux and the Positron Flux

The Electron Flux and the Positron Flux

Observations:

1. The electron flux and the positron flux are different in their magnitude and energy dependence.
2. Both spectra cannot be described by single power laws.
3. The spectral indices of electrons and positrons are different.
4. Both change their behavior at $\sim 30 \mathrm{GeV}$.
5. The rise in the positron fraction from 20 GeV is due to an excess of positrons, not the loss of electrons (the positron flux is harder).

AMS Results: ($\mathbf{e}^{+}+\mathbf{e}^{-}$) flux

Spectral Indices of electrons + positrons

The Search for the Origin of Dark Matter

Collisions of: Dark Matter (neútialinos, χ) will produce a signal of e+, $\overline{\mathrm{p}}, \ldots$

 aboye the background from the collisions of "ordinary" cosmic rays

AMS $\overline{\mathrm{p}} / \mathrm{p}$ results

The Search for the Origin of Dark Matter

To identify the Dark'Matter signal-we need.

to measure the e^{+}, e^{-}and \bar{p} signal accurately until 2024

$\stackrel{+}{(1)}$ 10	sitrons: $\chi+\chi \rightarrow \mathrm{e}^{+}+\ldots$ Collision of Cosmic Rays
	$10^{2} \quad \mathrm{e}^{ \pm}$energy [GeV]

To understand background, we need precise knowled̀ge of:

1. The cosmic ray fluxes $(\mathrm{p}, \mathrm{He}, \mathrm{C}, \ldots \mathrm{A})$
2. Propagation and Acceleration (Li, B/C, ...)

AMS: Multiple Measurements of Nuclear Charge

| Charge Resolution $(Z=6)$

Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

The isotropic protonflux Φ_{i} for the $i^{\text {th }}$ rigidity bin $\left(R_{i}, R_{i}+\Delta R_{i}\right)$ is:

$$
\Phi_{i}=\frac{\mathrm{N}_{i}}{\mathrm{~A}_{i} \varepsilon_{i} \mathrm{~T}_{i} \Delta \mathrm{R}_{i}}
$$

To match the statistics of 300 million events, extensive systematic errors studies have been made.

1) $\sigma_{\text {trig. }}$:trigger efficiency
2) $\sigma_{\text {acc. }}$:
a. the acceptance and event selection
b. background contamination
c. geomagnetic cutoff
3) $\sigma_{u n f}$:
a. unfolding
b. the rigidity resolution
4) $\sigma_{\text {scale.: }}$ the absolute rigidity scale function

TABLE I: The proton flux Φ as a function of rigidity

Rigidity [GV]	Φ	$\sigma_{\text {stat. }}^{\downarrow}$	$\sigma_{\text {trig. }}^{\downarrow}$	$\sigma_{\text {acc. }}^{\downarrow}$	$\sigma_{\text {unf. }}^{\downarrow}$	$\sigma_{\text {scale }}^{\downarrow}$	$\sigma_{\text {syst. }}$
$100-108$	$(4.085$	0.007	0.006	0.040	0.035	0.022	$0.058) \times 10^{-2}$
$108-116$	$(3.294$	0.007	0.005	0.033	0.028	0.018	$0.047) \times 10^{-2}$
$116-125$	$(2.698$	0.006	0.004	0.027	0.023	0.016	$0.039) \times 10^{-2}$
$125-135$	$(2.174$	0.005	0.004	0.022	0.019	0.013	$0.032) \times 10^{-2}$

AMS proton flux

AMS proton flux

AMS proton spectral index variation:

 Model independent measurement of spectral index

Accurate measurement of the flux of nuclei on the ISS

A new method:

To measure the flux of nuclei ($\mathrm{He}, \mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{C}$, O, \ldots.) accurately, we need to know the interaction cross section of these nuclei with the materials in AMS.

Unfortunately, the interactions of nuclei with the materials in AMS could not be measured on the ground. This limits the accuracy to which we could measure the fluxes.

On ISS we have now a method to measure these interactions in space accurately.

Measuring the interactions of nuclei within AMS when AMS is flying horizontal

First, we use the seven inner tracker layers,
L2-L8, to define beams of nuclei: He, Li, Be, B, \ldots

Second, we use left-to-right particles to measure the nuclear interactions in the lower part of the detector.

Third, we use right-to-left particles to measure the nuclear interactions in the upper part of detector.

AMS Measurement of $\mathrm{He}+\mathrm{C}$ Cross Section

AMS Helium Flux

proton/He flux ratio

Lithium in Cosmic Rays

- Like B and Be, Li is produced by the spallation of heavier nuclei during their
$\mathrm{C}, \mathrm{N}, \mathrm{O}, \ldots \mathrm{Fe}+\mathrm{ISM} \rightarrow \mathrm{Li}$
$\rightarrow \mathrm{B}, \mathrm{Be}+\mathrm{ISM} \rightarrow \mathrm{Li}$ propagation.
- Sensitive to CR propagation parameters (diffusion, convection, reacceleration...).

AMS Lithium flux - current status

Lithium flux with two power law fit

Slope changes at about the same rigidity as for protons and helium

Precise measurement of the rigidity spectra of B / C provides information on Cosmic Ray Interactions and Propagation

The propagation of cosmic rays and their interactions with the Interstellar Medium (ISM) is measured through the B/C ratio.

Boron and Carbon: Sample composition

AMS B/C Ratio

The latest AMS measurements of the positron fraction, the antiproton/proton ratio, the behavior of the fluxes of electrons, positrons, protons, helium, and other nuclei is providing new, precise, and unexpected information.

The accuracy and characteristics of the data, simultaneously from many different types of cosmic rays, will soon determine the true nature of the new phenomena we observe.

AMS physics for the lifetime of the Space Station
Accurate measurement ($\sim 1 \%$) of Cosmic Rays to higher energies including:
a. Continue the study of Dark Matter
b. Search for the Existence of Antimatter
c. Search for New Phenomena, ...

In the past hundred years, measurements of charged cosmic rays by balloons and satellites have typically contained $\sim 30 \%$ accuracy.
AMS is providing cosmic ray information with $\sim 1 \%$ accuracy.
The improvement in accuracy will provide new insights.

The Space Station is now a unique platform for fundamental physics research.

