

Λ_c⁺ Decays at BESII Lei Li For BESIII Collaboration

Beijing Institute of Petro-chemical Technology (BIPT)

中国物理学会高能物理分会/第十二届全国粒子物理学术会议 Aug. 22-26, 2016, Hefei, China

Introduction

• Λ_c^+ decays

- $> \Lambda_c^+$ semi-leptonic decays
- $> \Lambda_c^+$ hadronic decays

Summary

Discovery of Λ_c^+

■ Λ_c^+ was first observed of at Fermi Lab in 1976 and then established at Mark II experiment in 1980. ³⁰

Λ_c^+ cornerstone of charmed baryon spectroscopy

Quark model picture: a heavy quark (c) with a unexcited spin-zero diquark (u-d)

Heavy Quark Effective Theory:
 ✓ diquark correlation is enhanced by weak
 Color Magnetic Interaction with a heavy quark
 ✓ more reliable prediction of heavy-light quark
 ✓ more reliable prediction with light degrees of freedom that have net spin or isospin.

 Λ_c^+ may provides more powerful test on internal dynamic than D/Ds does.

Λ_c⁺ Measurements [PDG2015]

A DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	(мАВ/В
Hadronic modes	with a $p: S = -1$	inal states	
pK ⁰	(3.21± 0.30)	%	9.3%
$pK^{-}\pi^{+}$	(6.84 + 0.32)	%	5.8%
$p \overline{K}^{*}(892)^{0}$	[a] (2.13± 0.30)	%	14.1%
$\Delta(1232)^{++}K^{-}$	(1.18± 0.27)	%	22.9%
$\Lambda(1520)\pi^+$	$[a] (2.4 \pm 0.6)$	%	25.0%
$pK^{-}\pi^{+}$ nonresonant	(3.8 ± 0.4)	%	10.5%
$p \frac{r}{K^0} \pi^0$	(4.5 ± 0.6)	%	13.3%
$p\overline{K}^0 n$	(1.7 ± 0.4)	%	23.5%
$p \overline{K}^0 \pi^+ \pi^-$	(3.5 ± 0.4)	%	11.4%
$pK^{-}\pi^{+}\pi^{0}$	(4.6 ± 0.8)	%	13.0%
$pK^{*}(892)^{-}\pi^{+}$	[q] (1.5 ± 0.5)	%	33.3%
$p(K^{-}\pi^{+})$ nonresonant π^{0}	(5.0 ± 0.9)	%	18.0%
$\Delta(1232)K^{*}(892)$	seen		
$pK^{-}\pi^{+}\pi^{+}\pi^{-}$	(1.5 ± 1.0)	× 10 ⁻³	66.7%
$pK^{-}\pi^{+}\pi^{0}\pi^{0}$	(1.1 ± 0.5)	%	45.4%
Hadronic mode	with a $p: S = 0$ fi	nal states	
$p\pi^{+}\pi^{-}$	(4.7 ± 2.5)	× 10 ⁻³	45.4%
p f ₀ (980)	[q] (3.8 ± 2.5)	× 10 ⁻³	53.2%
$p\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(2.5 ± 1.6)	× 10 ⁻³	64.0%
pK+K-	(1.1 ± 0.4)	× 10 ⁻³	36.4%
pφ	[q] (1.12± 0.23)	× 10 ⁻³	
pK^+K^- non- ϕ	(4.8 ± 1.9)	× 10 ⁻⁴	
Hadronic modes wit	h a hyperon: $S = -$	1 final states	
$\Lambda \pi^+$	(1.46 ± 0.13)	%	8.9%
$\Lambda \pi^+ \pi^0$	(5.0 ± 1.3)	%	26.0%
$\Lambda \rho^+$	< 6	% CL=95%	
$\Lambda \pi^+ \pi^+ \pi^-$	(3.59 ± 0.28)	%	7.8%
$\Sigma(1385)^+\pi^+\pi^-, \Sigma^{*+} \rightarrow$	(1.0 ± 0.5)	%	20.0%
$\Sigma^{\Lambda\pi^+}_{(1385)^-\pi^+\pi^+, \Sigma^{*-} \rightarrow \Lambda\pi^-}$	(7.5 ± 1.4)	× 10 ⁻³	18.7%
HTTP://PDG.LBL.GOV	Page 32 C	reated: 10/6/201	5 12

✓ Total branching fraction small than 65%.

✓ Lots of unknown decay channels ✓ Quite large uncertainties, most larger than 20% $\Lambda \mu^+ \nu_{\mu}$ ✓ Most BFs are measured relative to $\Lambda_c^+ \rightarrow pK^-\pi^+$

$\Lambda \pi^+ \rho^0$	$(1.4 \pm 0.6)\%$		42.8%
$\Sigma(1385)^+ \rho^0$, $\Sigma^{*+} \rightarrow \Lambda \pi^+$	$(5 \pm 4) \times 10^{-1}$	3	80.0%
$\Lambda \pi^+ \pi^+ \pi^-$ nonresonant	< 1.1 %	CL=90%	
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$ total	(2.5 ± 0.9)%		36.0%
$\Lambda \pi^+ \eta$	[q] (2.4 ± 0.5)%		20.8%
$\Sigma(1385)^{+}\eta$	[q] (1.16± 0.35) %		30.2%
$\Lambda \pi^+ \omega$	[q] (1.6 ± 0.6) %	_	37.5%
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$, no η or ω	< 9 × 10 ⁻¹	³ CL=90%	
$\Lambda K^+ \overline{K^0}$	$(6.4 \pm 1.3) \times 10^{-1}$	3 S=1.6	20.3%
$\Xi(1690)^{0}K^{+}, \Xi^{*0} \rightarrow \Lambda K^{0}$	$(1.8 \pm 0.6) \times 10^{-1}$	3	33.3%
$\Sigma^{0}\pi^{+}$	(1.43± 0.14) %		10.0%
$\Sigma^+ \pi^0$	(1.37± 0.30) %		21.9%
$\Sigma^+\eta$	$(7.5 \pm 2.5) \times 10^{-1}$	5	33.3%
$\Sigma^+\pi^+\pi^-$	(4.9 ± 0.5)%		10.2%
$\Sigma^+ \rho^0$	< 1.8 %	CL=95%	
$\Sigma^{-}\pi^{+}\pi^{+}$	(2.3 ± 0.4) %		17.4%
$\sum_{n=0}^{\infty} \pi^{+} \pi^{0}$	(2.5 ± 0.9) %		36.0%
$\sum_{n=1}^{\infty} \pi^{+} \pi^{+} \pi^{-}$	(1.13± 0.31) %		27.4%
$\Sigma^{+}\pi^{+}\pi^{-}\pi^{0}$			07 404
$\Sigma'\omega$	[q] (3.7 ± 1.0)%		27.1%
2+K+K-	$(3.8 \pm 0.6) \times 10^{-1}$	2	15.8%
$\sum \phi$	$[q] (4.3 \pm 0.7) \times 10^{-1}$	3	26.2%
$=(1090)^{\circ}K^{\circ}, =^{\circ\circ} \rightarrow$	$(1.11 \pm 0.29) \times 10^{-1}$	-	20.270
$\Sigma^+ K^+ K^-$ nonresonant	< 9 × 10 ⁻¹	4 CI =90%	
=0 K+	$(53 \pm 13) \times 10^{-3}$	3	24 5%
$\Xi^{-}K^{+}\pi^{+}$	$(7.0 \pm 0.8) \times 10^{-3}$	³ S=1.1	11 4%
$\Xi(1530)^{0}K^{+}$	$[a] (3.5 \pm 1.0) \times 10^{-3}$	3	28.6%
Hadronic modes wi	th a hyperon: $S = 0$ final	states	20.20/
	$(6.9 \pm 1.4) \times 10^{-1}$	•	20.3%
$\Lambda K^+ \pi^+ \pi^-$	< 6 × 10 ⁻⁷	* CL=90%	17 5%
2°K+	$(5.7 \pm 1.0) \times 10^{-1}$	•	17.070
$\Sigma^{*}K^{+}\pi^{+}\pi^{-}$	< 2.9 × 10	* CL=90%	20 /0/
$\Sigma' K' \pi$	$(2.3 \pm 0.7) \times 10^{-1}$	3	21 6%
$\Sigma + K^{*}(892)^{*}$	[q] (3.8 ± 1.2) × 10 ⁻¹	3 51 699	31.0%
2 Κ'π'	< 1.3 × 10 ⁻¹	CL=90%	
Doubly Cal	bibbo-suppressed modes		
ρK ⁺ π ⁻	< 3.1 × 10 ⁻⁴	4 CL=90%	
Sen	nileptonic modes		
$\Lambda \ell^+ \nu_{\ell}$	[r] (2.8 ± 0.4)%		47.00/
$\Lambda e^+ \nu_e$	(2.9 ± 0.5)%		17.2%
$\sqrt{0} \Lambda \mu^+ \nu_{\mu}$	$(2.7 \pm 0.6)\%$		22.2%

AB/B

South

BESIII detector

2004: start BEPCII construction 2008: test run of BEPCII 2009: Start of BESIII data taking Beam energy: 1.0-2.3 GeV Achieved Design Luminosity on Apr 5th, 2016 : 1×10³³ cm⁻²s⁻¹

Linac

BESIII Detector

Data samples at BESIII

In 2014, BESIII collected data above Λ_c pair threshold and run machine at 4.599 GeV with excellent performance.

In the future, it is possible that BESIII can collect Λ_c data at high energies, for example 4.64 GeV or more high energies.

It is time to systematically study the decay property of Λ_c at BESIII.

Analysis Technique

✓ Single Tags (ST)

$$M_{
m BC} = \sqrt{E_{
m beam}^2 - |\overrightarrow{p}_{\overline{\Lambda}_c^-}|^2}$$

✓ Double Tags (DT) $U_{\rm miss} = E_{\rm miss} - c |\vec{p}_{\rm miss}|$

✓ Branching Fraction (BF) $\mathcal{B}_{SL} = \frac{N^{\text{semi}}}{N^{\text{tag}} \times \epsilon}$

Clean sample of ST charmed baryons can be fully reconstructed by hadronic decays with large BFs. Based on this, one can access to absolute BFs and dynamics in the decays.

Singly Tagged $\overline{\Lambda}_c^-$ baryons

The singly tagged $\overline{\Lambda}_c^-$ baryons are reconstructed by:

 $\begin{array}{l} \Lambda_{c}^{-} \rightarrow \bar{p} K_{S}^{0}, & \Lambda_{c}^{-} \rightarrow \bar{p} K^{+} \pi^{-} \\ \Lambda_{c}^{-} \rightarrow \bar{p} K_{S}^{0} \pi^{0}, & \Lambda_{c}^{-} \rightarrow \bar{p} K^{+} \pi^{-} \pi^{0}, \\ \Lambda_{c}^{-} \rightarrow \bar{p} K_{S}^{0} \pi^{+} \pi^{-}, & \Lambda_{c}^{-} \rightarrow \bar{\Lambda} \pi^{-}, \\ \Lambda_{c}^{-} \rightarrow \bar{\Lambda} \pi^{-} \pi^{0}, & \Lambda_{c}^{-} \rightarrow \bar{\Lambda} \pi^{-} \pi^{+} \pi^{-}, \\ \Lambda_{c}^{-} \rightarrow \bar{\Sigma}^{0} \pi^{-}, & \Lambda_{c}^{-} \rightarrow \bar{\Sigma}^{-} \pi^{0} \quad \text{and} \quad \Lambda_{c}^{-} \rightarrow \bar{\Sigma}^{-} \pi^{+} \pi^{-}, \end{array}$

with

• $\mathcal{K}^{0}_{S} \rightarrow \pi^{+}\pi^{-}$, • $\bar{\Lambda} \rightarrow \bar{p}\pi^{+}$, • $\bar{\Sigma}^{0} \rightarrow \gamma \bar{\Lambda}$ with $\bar{\Lambda} \rightarrow \bar{p}\pi^{+}$, • $\bar{\Sigma}^{-} \rightarrow \bar{\Lambda}\pi^{-}$, • $\pi^{0} \rightarrow \gamma \gamma$.

Singly Tagged $\bar{\Lambda}_c^-$ baryons

Currently, the total measured BFs for Λ_c^+ is less than 65%.

Singly Tagged $\bar{\Lambda}_{c}^{-}$ baryons

\blacksquare M_{BC} distributions for 11 single tags

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\overrightarrow{p}_{\overline{\Lambda}_c^-}|^2}$$

	300	p K ⁰ s	2000	$\overline{p}K^{+}\pi$	$\frac{200}{\mathrm{pK}_{\mathrm{S}}^{0}\pi}$	τ ⁰	Mode	ΔE (GeV)	$N_{ar\Lambda_c^-}$
	200 100	[]	1000	p	- 100-	A.t.	$\bar{p}K_S^0$	[-0.025, 0.028]	1066 ± 33
C_7				 _	200-		$\bar{p}K^{+}\pi^{-}$	[-0.019, 0.023]	5692 ± 88
deV/	400	ρκ ππ°	200	$p \kappa_s \pi^* \pi$	Λπ	. ↓	$\bar{p}K^0_S\pi^0$	[-0.035, 0.049]	593 ± 41
010	200	munich	100	- A water and a	100-	A 1	$\bar{p}K^+\pi^-\pi^0$	[-0.044, 0.052]	1547 ± 61
s/0.0		$\overline{\Lambda}\pi^{0}$	$\overline{\Lambda}\pi^{-}\pi^{+}\pi^{-}$	$200 \frac{1}{\Sigma^0 \pi}$		$\bar{p}K^0_S\pi^+\pi^-$	[-0.029, 0.032]	516 ± 34	
vent	400		200		100-	Å 1	$\bar{\Lambda}\pi^{-}$	[-0.033, 0.035]	593 ± 25
	200	- 100-		$\bar{\Lambda}\pi^{-}\pi^{0}$	[-0.037, 0.052]	1864 ± 56			
	100	$\overline{\Sigma} \pi^0$	400	$400\overline{\Sigma\pi^+\pi}$	2.26 2.28 2.30	$\bar{\Lambda}\pi^{-}\pi^{+}\pi^{-}$	[-0.028, 0.030]	674 ± 36	
	50		200	A]		$\bar{\Sigma}^0 \pi^-$	[-0.029, 0.032]	532 ± 30
	20	and the second	200	Aug	x x		$\bar{\Sigma}^- \pi^0$	[-0.038, 0.062]	329 ± 28
		2.26 2.28 2.3	30	2.26 2.28 2. $M_{\rm BC}~({\rm GeV}/c)$	$.30 c^{2})$		$\bar{\Sigma}^-\pi^+\pi^-$	[-0.049, 0.054]	1009 ± 57
					/				

ST yields: 14415±159 events with 11 ST modes

$\Lambda_{c}^{+} \rightarrow \Lambda l^{+} \nu_{l}$ decays

□ In 1991, ARGUS reported the first measurement of $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$ with 477 pb⁻¹ Y(1S), Y(2S) and Y(4S) data

□ In 1994, CLEO performed same measurement with 1.6 fb⁻¹ Y(4S) data

□ Based on above two measurements , PDG extracts BF for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$ with $\tau(\Lambda_c^+)$ and the assumption of form factors

$\Lambda \ell^+ \nu_\ell$	[r] (2.8 ± 0.4)%
$\Lambda e^+ \nu_e$	(2.9 ± 0.5)%
$\Lambda \mu^+ \nu_\mu$	(2.7 ± 0.6)%

Not a direct measurement!

$\Lambda_{c}^{+} \rightarrow \Lambda e^{+} \nu_{e}$ decays

Theoretical calculations on the BF ranges from 1.4% to 9.2%

PDG2014: (2.1±0.6)%

PDG2015: (2.9±0.5)%

Input B[$\Lambda_{C}^{+} \rightarrow pK^{-}\pi^{+}$]=(6.84^{+0.32}_{-0.40})% by BELLE [PRL113,042002(2014)]

B[Λ_c^+ → Λe^+v]=(3.63±0.38±0.20)% First absolute measurement Important for test and calibrate the LQCD calculations.

Model & Experiment	Br ^{exp} [%]	References		
SU(4) symmetry limit	9.2	M. Avila-Aoki et al [PRD40, 2944 (1989)]		
Non-relativistic quark model	2.6	Perez-Marcial et al [PRD40, 2955 (1989)]		
MIT bag model [MBM]	1.9	Perez-Marcial et al [PRD40, 2955 (1989)]		
Relativistic spectator Model	4.4	F. Hussain et al [ZPC51 , 607 (1991)]		
Spectator quark model	1.96	Robert Singleton, Jr. [PRD43, 2939(1991)]		
Quark confinement Model	5.62	G. V. Efimov et al [ZPC52, 149 (1991)]		
Non-relativistic quark model	2.15	A. Garcia et al [PRD45, 3266 (1992)]		
Non-relativistic quark model	1.42	H. Y. Cheng et al [PRD53, 1457 (1995)]		
QCD Sum Rule	3.0±0.9	H. G. Dosch et al [PLB431, 173 (1998)]		
QCD Sum Rule	2.6 ± 0.4	R. S. Marques de Carvalho et al		
QCD Sum Rule	5.8±1.5	[PRD60, 034009 (1999)]		
HOSR	4.72	M. Pervin et al [PRC72, 035201 (2005)]		
HONR	4.2			
STSR	2.22			
STNR	1.58			
LCSRs	3.0±0.3 (CZ-type) 2.0±0.3(Ioffe-type)	Y. L. Liu, M.Q. Huang and D. W. Wang [PRD80, 074011 (2009)]		
Convariant confined quark model	2.78	Thomas Gutsche et al [PRD93, 034008(2016)]		
BESIII [First absolute measurement]	3.63±0.43	PRL 115, 221805 (2015)]		

$\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+} \nu_{\mu}$ decays

Theoretical calculations on the BF ranges from 1.4% to 9.2%

D Preliminary results:

First absolute measurement

- $B[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+} \nu_{\mu}] = (3.49 \pm 0.46 \pm 0.26)\%$
- $\Gamma[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+} \nu_{\mu}] / \Gamma[\Lambda_{c}^{+} \rightarrow \Lambda e^{+} \nu_{e}] = 0.96 \pm 0.16 \pm 0.04$

where the first error is statistical and the second systematic.

Search for $\Lambda_c^+ \rightarrow \Lambda^* l^+ \nu_l$

□ If Λ_c^+ is J=1/2, it favors the decay $\Lambda_c^+ \rightarrow \Lambda l^+ v_l$.

$\boldsymbol{\Lambda_c^+} \qquad I(J^P) = 0(\frac{1}{2}^+)$	$B[\Lambda_{c}^{+} \rightarrow \Lambda^{*} l^{+} v_{l}] < < B[\Lambda_{c}^{+} \rightarrow \Lambda l^{+} v_{l}]?$
J is not well measured; $\frac{1}{2}$ is the quark-model prediction.	u
Mass $m = 2286.46 \pm 0.14$ MeV Mean life $\tau = (200 \pm 6) \times 10^{-15}$ s $(S = 1.6)$ $c\tau = 59.9 \ \mu$ m	suggestive of di-quark model
	• . •

□ Searching for $\Lambda_c^+ \rightarrow \Lambda^* l^+ \nu_l$ is quite important.

Λ(1405) 1/2 ⁻	$J^P) = 0(\frac{1}{2}^{-})$		A(1600) 1/2 ⁺	$I(J^P) = 0(\frac{1}{2}^+)$	
Mass $m = 1405.1^{+1.3}_{-1.0}$ MeV Full width $\Gamma = 50.5 \pm 2.0$ Me Below $\overline{K}N$ threshold	v		Mass $m = 1560$ to Full width $\Gamma = 50$ t $p_{\text{beam}} = 0.58$ G	1700 (\approx 1600) MeV to 250 (\approx 150) MeV SeV/c $4\pi\lambda^2 = 41.6$ mb	$\Lambda^* \rightarrow pK^- \Sigma \pi$
Λ(1405) DECAY MODES Fract Σπ 100 %	ion (Γ _i /Γ) 6	ρ (MeV/c) 155	<mark>Λ(1600) DECAY MODES</mark> N K Σπ	Fraction (Γ _i /Γ) 15–30 % 10–60 %	ρ (MeV/c) 343 338
/(1520) 3/2	$J^{P}) = 0(\frac{3}{2}^{-})$		Л(1670) 1/2 [—]	$I(J^P) = 0(\frac{1}{2}^-)$	
Mass $m = 1519.5 \pm 1.0$ MeV Full width $\Gamma = 15.6 \pm 1.0$ Me	[0] √ [0]		Mass $m = 1660$ to Full width $\Gamma = 25$ t $p_{\text{beam}} = 0.74$ G	1680 (\approx 1670) MeV to 50 (\approx 35) MeV SeV/c $4\pi\lambda^2 = 28.5$ mb	
A(1520) DECAY MODES Fract	ion (Γ_i/Γ)	p (MeV/c)		F	- (14-)(1)
$\sum_{n=1}^{\infty} \pi$ (42)	±1)%	268	NK	20-30 %	414
$\begin{array}{cccc} \Lambda \pi \pi & (10) \\ \Sigma \pi \pi \pi & (0.9) \\ \Lambda \gamma & (0.8) \end{array}$	$\begin{array}{c} \pm 1 &) \% \\ \pm 0.1 &) \% \\ 5 \pm 0.15) \% \end{array}$	259 169 350	$\Sigma \pi$ $N\eta$ NK^* (892), S=3/2, D-wave	25-55 % 10-25 % (5±4) %	394 69 †
channel		N. Iken [PRD93	o et al. , 14021]	M [PR	. Pervin et al RC72, 035201]
$\Lambda_c^+ \rightarrow \Lambda(1405) e^+ \nu_e$	$\Lambda(1405) e^+ v_e$ 2×1		10 ⁻⁵	-5 0.6%	
$\Lambda_c^+ \rightarrow \Lambda(1520) e^+ \nu_e \qquad$		0.1%		0.1%	

Some theories suggested that the weak decay processes are important to clarify the existence and the nature of $\Lambda(1405)$. Thus, study of $\Lambda_c^+ \rightarrow \Lambda(1405) l^+ v_l$ is very important.

Absolute BFs for Λ_c^+ hadron decays

Measurement using the threshold pair-productions via e⁺e⁻ annihilation is unique: the most simple and straightforward

 1.05 ± 0.28

 1.00 ± 0.34

 3.6 ± 1.0

 2.7 ± 1.0

 $1.27 \pm 0.08 \pm 0.03$

 $1.18 \pm 0.10 \pm 0.03$

 $4.25 \pm 0.24 \pm 0.20$

 $1.56 \pm 0.20 \pm 0.07$

 $\Sigma^0 \pi^+$

 $\Sigma^+ \pi^0$

 $\Sigma^+ \omega$

 $\Sigma^+\pi^+\pi^-$

PRL116(2016)052001

A global least-square fitter is utilized to improve the measured precision for $12 \Lambda_c^+$ hadronic decay channels.

$$\sum_{j=1}^{DT} = \sum_{i^+ \neq j} N_{i^+ j^-}^{DT} + \sum_{i^- \neq j} N_{i^- j^+}^{DT} + N_{jj}^{DT}$$

Absolute BFs are improved significantly.

✓ BESIII BF for $\Lambda_c^+ \rightarrow pK^-\pi^+$ is smaller.

✓ Improved absolute BF of pK⁻ π^+ together with BELLE's result are key to calibrate other decays.

Observation of $\Lambda_c^+ \rightarrow nK_S^0 \pi^+$

First observation of Λ_{C}^{+} decays to final states involving the neutron.

The missing neutron is detected by:

$$M_{\rm miss}^2 = (p_{\Lambda_c^+} - p_{K_S^0} - p_{\pi^+})^2 = E_{\rm miss}^2 - c^2 |\overrightarrow{p}_{\rm miss}|^2$$

83±11 net signal events

BESIII Preliminary results:

 $B[\Lambda_c^+ \rightarrow nK_S^0 \pi^+] = (1.82 \pm 0.23 \pm 0.11)\%$

Fit to M_{miss}^2 and $M_{\pi+\pi}$ spectra in (a,b) $\overline{\Lambda}_c^-$ signal region and (a',b') $\overline{\Lambda}_c^-$ sideband region simultaneously.

The relative BF of neutron-involved mode to proton-involved mode is essential to test the isospin symmetry and extract the strong phases of different final states. [PRD93 (2016) 056008]

Study of SCS Decays $\Lambda_c^+ \rightarrow p\pi^+\pi^-$ and $\Lambda_c^+ \rightarrow pK^+K^-$

BESIII provides important results on Λ_c^+ decays

- > Λ_{C}^{+} Semi-leptonic decys
- > Λ_{C}^{+} hadronic decays

Important to understand the decay property of $\Lambda_c{}^+$

□ More fruitful results will come out!

Thanks!