

Fluctuations of conserved charges from Lattice QCD

Heng-Tong Ding (丁亨通) Central China Normal University

EoS at μ_B>0: arXiv:1408.6305,1412.6727,16xx.xxxx
 Curvature of freezeout line: PRD93 (2016)1,014512

中国物理学会高能物理分会第十二届全国粒子物理学术会议 2016年8月22-26日,中国科学技术大学,合肥

QCD Phase Diagram

- The QCD phase structure is extensively studied by Heavy Ion Collision (HIC) Experiment
- Hadronic fluctuations and abundance are measured at freezeout
- The QCD Equation of State (EoS) is an essential input to hydrodynamic modeling of HIC

Lattice QCD can provide both EoS and fluctuations of conserved charges at small μ_{B}/T

Beam Energy Scan at RHIC

Ratio of the 4th to 2nd order proton number fluctuations

Can this non-monotonic behavior be understood in terms of the QCD thermodynamics in equilibrium?

What is the relation of this intriguing phenomenon to the critical behavior of QCD phase transition?

QCD phase diagram

Equation of State at $\mu_B=0$

Consensus of QCD EoS obtained
 from two different discretization
 schemes HotQCD, PRD 90 (2014) 094503,
 Wuppertal-Budapest, Phys. Lett. B730 (2014) 99

Parameterization of EoS for use

$$\frac{p}{T^4} = \frac{1}{2} \left(1 + \tanh(c_t(\bar{t} - t_0))) \right) \quad \mathbf{\bar{t}} = \mathbf{T}/\mathbf{T}_c$$
$$\cdot \frac{p_{id} + a_n/\bar{t} + b_n/\bar{t}^2 + c_n/\bar{t}^3 + d_n/\bar{t}^4}{1 + a_d/\bar{t} + b_d/\bar{t}^2 + c_d/\bar{t}^3 + d_d/\bar{t}^4}$$

HotQCD, PRD 90 (2014) 094503

Smooth transition from hadronic phase to QGP phase; system is far away from the idea gas limit at ~2.7T_c

Lattice simulations at nonzero μ_B

- No direct simulation is reliable due to the infamous sign problem
- Several approaches exist: Reweighting, imaginary μ_B , complex Langevin, Lefschetz thimbles...
- Taylor Expansion Method for small values of μ_{B}

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Allton et al., Phys.Rev. D66 (2002) 074507 Gavai & Gupta et al., Phys.Rev. D68 (2003) 034506

Fluctuations of conserved charges

Taylor expansion of the QCD pressure:

Allton et al., Phys.Rev. D66 (2002) 074507 Gavai & Gupta et al., Phys.Rev. D68 (2003) 034506

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

 \Im Taylor expansion coefficients at μ =0 are computable in Lattice QCD

$$\chi^{BQS}_{ijk} \equiv \chi^{BQS}_{ijk}(T) = \frac{1}{VT^3} \frac{\partial P(T,\hat{\mu})/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \Big|_{\hat{\mu}=0}$$

Other quantities can be obtained using relations, e.g.

$$\frac{\epsilon - 3p}{T^4} = T \frac{\partial P/T^4}{\partial T} = \sum_{i,j,k=0}^{\infty} \frac{T \,\mathrm{d}\chi_{ijk}^{BQS}/\mathrm{d}T}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Pressure of hadron resonance gas (HRG)

$$\frac{p}{T^4} = \sum_{\substack{m \in meson, baryon}} \ln Z(T, V, \mu) \sim \exp(-m_H/T) \exp((B\mu_B + S\mu_s + Q\mu_Q)/T)$$

Indirect evidence of experimentally not yet observed strange states hinted from QCD thermodynamics

A. Bazavov et al. [Bielefeld-BNL-CCNU], Phys. Rev. Lett. 113 (2014)072001

Pressure of QCD at nonzero muB

HTD, Nucl. Phys. A 931 (2014) 52-62, HTD, F. Karsch, S. Mukherjee, arXiv:1504.0527, E. Laermann [BNL-Bielefeld-CCNU], talk given in lattice 2016

- HRG describes well on the LO expansion coefficient up to ~160 MeV while it deviates from NLO expansion coefficient ~ 40% in the crossover region
- For small muB/T the LO contribution dominates

Pressure with $\mu_Q = \mu_s = 0$

E. Laermann [BNL-Bielefeld-CCNU], lattice 2016

- Leading order corrections dominate at small μ_B/T
- Below Higher order corrections become significant at μ B/T≥2

Conditions meet in heavy ion collisions

• Zero net strangeness $n_s=0$, and $n_Q/n_B=r=0.4$ as in PbPb collision systems

$$\frac{n_X}{T^3} = \frac{\partial P/T^4}{\partial \hat{\mu}_X}$$
, X=B,Q,S

$$n_S = n_S^{(1)} \mu_B + n_S^{(3)} \mu_B^3 + \dots = 0, \quad n_Q = n_Q^{(1)} \mu_B + n_Q^{(3)} \mu_B^3 + \dots$$
$$n_I = n_I^{(1)} \mu_B + n_I^{(3)} \mu_B^3 + \dots = (\frac{1}{r} - 2)n_Q$$

E.g. 1st order coefficient in n_S: $n_{S}^{(1)} = \chi_{2}^{S} \frac{\mu_{S}}{\mu_{B}} + \chi_{11}^{QS} \frac{\mu_{Q}}{\mu_{B}} + \chi_{11}^{BS}$

 μ_{S} , μ_{Q} and μ_{B} are correlated

,

Conditions meet in heavy ion collisions Taylor expansion of the QCD pressure: ROC $\frac{p}{T^4}$

$$\frac{1}{4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

$$\mu_Q = \mu_s = 0$$
:

strangness neutral case:

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} \frac{\chi_{2n}^B}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n}$$
$$\frac{p}{T^4} = \sum_{n=0}^{\infty} \frac{\chi_{2n,\text{SN}}^B}{(2n)!} \left(\frac{\mu_B}{T}\right)^{2n}$$

Expand μ_Q and μ_S in terms of μ_B

$$\frac{\mu_Q}{T} = q_1 \frac{\mu_B}{T} + q_3 \left(\frac{\mu_B}{T}\right)^3 + \cdots, \quad \frac{\mu_S}{T} = s_1 \frac{\mu_B}{T} + s_3 \left(\frac{\mu_B}{T}\right)^3 + \cdots$$

With constrains from isospin symmetry etc., one can derive q_i and s_i order by order and then the pressure etc.

A. Bazavov, HTD et al., Phys. Rev. Lett. 109 (2012)192302

Conditions meet in heavy ion collisions

• Zero net strangeness $n_s=0$, and $n_Q/n_B = r=0.4$ as in PbPb collision systems

A. Bazavov, HTD et al., Phys. Rev. Lett. 109 (2012)192302

EoS in the strangeness neutral system

At LHC and RHIC: $\langle n_S \rangle = 0$, $n_Q/n_B = 0.4$:

BNL-Bielefeld-CCNU, 1408.6305,1412.6727, lattice 2016

The EoS is well under control at µ_B/T≲2 or √s_{NN} ≥20 GeV

Line of constant physics and freeze-out

Parameterization $T(\mu_B) = T(0)(1 - \kappa_2 \hat{\mu}_B^2 + \mathcal{O}(\hat{\mu}_B^4))$ curvature at constant pressure: $\kappa_{2,p} \approx 0.011$ curvature at constant energy: $\kappa_{2,\epsilon} \approx 0.013$ curvature of the crossover line: $\kappa_{2,c} \approx 0.006 - 0.013$

Explore the QCD phase diagram through fluctuations of conserved charges

Comparison of experimentally measured higher order cumulants of conserved charges to those from LQCD, e.g.:

$$\frac{M_Q(\sqrt{s})}{\sigma_Q^2(\sqrt{s})} = \frac{\langle N_Q \rangle}{\langle (\delta N_Q)^2 \rangle} = \frac{\chi_1^Q(T,\mu_B)}{\chi_2^Q(T,\mu_B)} = R_{12}^Q(T,\mu_B)$$
$$\frac{S_Q(\sqrt{s})\sigma_Q^3(\sqrt{s})}{M_Q(\sqrt{s})} = \frac{\langle (\delta N_Q)^3 \rangle}{\langle N_Q \rangle} = \frac{\chi_3^Q(T,\mu_B)}{\chi_1^Q(T,\mu_B)} = R_{31}^Q(T,\mu_B)$$

LQCD

generalized susceptibilities

$$\chi_n^Q(T,\vec{\mu}) = \frac{1}{VT^3} \frac{\partial^n \ln Z(T,\vec{\mu})}{\partial (\mu_Q/T)^n}$$

HIC mean: M_Q variance: σ_Q^2 skewness: S_Q

Explore the QCD phase diagram

HTD, Nucl. Phys. A 931 (2014) 52-62, HTD, F. Karsch, S. Mukherjee, arXiv:1504.0527, E. Laermann [BNL-Bielefeld-CCNU], talk given in lattice 2016

conserved charge fluctuations & freeze-out

Ratio on charge fluctuations on the freeze-out line

In heavy ion collisions $M_s=0$ and $M_Q/M_B=r$

$$R_{12}^X(T,\mu) \equiv \frac{M_X}{\sigma_X^2} = \frac{\chi_1^X(T,\mu)}{\chi_2^X(T,\mu)} \ , \qquad {\rm X=B,Q}$$

ratio of electrical charge to baryon ratio :

ratios of mean

to variance:

$$\Sigma_r^{QB} \equiv R_{12}^Q / R_{12}^B = r \, \sigma_B^2 / \sigma_Q^2$$

Expand the ratio around $\mu_B=0$:

$$\Sigma_r^{QB}(T,\hat{\mu}_B) = \Sigma_r^{QB}(T,\hat{\mu}_B=0) + \frac{1}{2!} \frac{\partial^2 \Sigma_r^{QB}(T,\hat{\mu}_B)}{\partial \hat{\mu}_B^2} \Big|_{\hat{\mu}_B=0} \hat{\mu}_B^2$$

Expand the ratio around $T_f(\mu_B)=T_f(\mu_B=0)$:

$$\Sigma_r^{QB}(T_f, \hat{\mu}_B) = \Sigma_r^{QB}(T_f = T_{f,0}, \hat{\mu}_B) + \frac{\mathrm{d}\Sigma_r^{QB}(T_f, \hat{\mu}_B)}{\mathrm{d}T}\Big|_{T_{f,0}}(T_f - T_{f,0})$$

Parameterization of $T_f(\mu_B)$: works well in HRG models

$$T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \left(\mu_B / T_{f,0} \right)^2 \right)$$

Cleymans et al., PRC 73(2006)034905 Andronic, Braun-Munzinger & Stachel, NPA 772(2006)167

Taylor expansion of the ratio at T= $T_f(\mu_B=0)$ and $\mu_B=0$

$$\Sigma_r^{QB}(\mathbf{T},\hat{\mu}_B) = \Sigma_r^{QB}(\mathbf{T},\hat{\mu}_B=0) + \frac{1}{2!} \frac{\partial^2 \Sigma_r^{QB}(\mathbf{T},\hat{\mu}_B)}{\partial \hat{\mu}_B^2} \Big|_{\hat{\mu}_B=0} \hat{\mu}_B^2$$

Parameterization of $T_f(\mu_B)$: works well in HRG models

 $T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \left(\mu_B / T_{f,0} \right)^2 \right)$ Cleymans et al., PRC 73(2006)034905 Andronic, Braun-Munzinger & Stachel, NPA 772(2006)167

Taylor expansion of the ratio at $T = T_f(\mu_B = 0)$ and $\mu_B = 0$

$$\Sigma_r^{QB}(\mathbf{T_f}, \hat{\mu}_B) = \Sigma_r^{QB}(\mathbf{T_f}, \hat{\mu}_B = 0) + \frac{1}{2!} \frac{\partial^2 \Sigma_r^{QB}(\mathbf{T_f}, \hat{\mu}_B)}{\partial \hat{\mu}_B^2} \Big|_{\hat{\mu}_B = 0} \hat{\mu}_B^2$$

Parameterization of $T_f(\mu_B)$: works well in HRG models

$$T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \, (\mu_B / T_{f,0})^2 \right)$$

Cleymans et al., PRC 73(2006)034905 Andronic, Braun-Munzinger & Stachel, NPA 772(2006)167

Taylor expansion of the ratio at T= $T_f(\mu_B=0)$ and $\mu_B=0$

$$\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}) = \Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}=0) + \frac{1}{2!} \frac{\partial^{2} \Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{\partial \hat{\mu}_{B}^{2}} \Big|_{\hat{\mu}_{B}=0} \hat{\mu}_{B}^{2}$$
$$\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}) = \Sigma_{r}^{QB}(T_{f}=T_{f,0},\hat{\mu}_{B}) + \frac{\mathrm{d}\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{\mathrm{d}T} \Big|_{T_{f,0}} (T_{f}-T_{f,0})$$

Parameterization of $T_f(\mu_B)$: works well in HRG models

$$T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \, (\mu_B / T_{f,0})^2 \right)$$
 Cley And

Cleymans et al., PRC 73(2006)034905 Andronic, Braun-Munzinger & Stachel, NPA 772(2006)167

Taylor expansion of the ratio at T= $T_f(\mu_B=0)$ and $\mu_B=0$

Bielefeld-BNL-CCNU, PRD 93 (2016)014512

 $\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}) = \Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}=0) + \frac{1}{2!} \frac{\partial^{2} \Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{\partial \hat{\mu}_{B}^{2}} \Big|_{\hat{\mu}_{B}=0} \hat{\mu}_{B}^{2}$ $\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}) = \Sigma_{r}^{QB}(T_{f}=T_{f,0},\hat{\mu}_{B}) + \frac{\mathrm{d}\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{\mathrm{d}T} \Big|_{T_{f,0}} (T_{f}-T_{f,0})$

Ratio of $(M_Q/\sigma_Q^2)/(M_B/\sigma_B^2)$ can be expressed in terms of κ_2^f :

$$\begin{split} \Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}) &= \Sigma_{r}^{QB}(T_{f,0},\hat{\mu}_{B}=0) + \left(\frac{1}{2!}\frac{\partial^{2}\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{\partial\hat{\mu}_{B}^{2}} - \kappa_{2}^{f}T_{f,0}\frac{\mathrm{d}\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{\mathrm{d}T}\right)\Big|_{T_{f,0},\hat{\mu}_{B}=0} \hat{\mu}_{B}^{2} \end{split}$$
Experimentally
accessible
LQCD
To be
computable
determined

Parameterization of $T_f(\mu_B)$: works well in HRG models

$$T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \left(\mu_B / T_{f,0} \right)^2 \right) \qquad \underset{\text{And}}{\text{Cley}}$$

Cleymans et al., PRC 73(2006)034905 Andronic, Braun-Munzinger & Stachel, NPA 772(2006)167

Taylor expansion of the ratio at T= $T_f(\mu_B=0)$ and $\mu_B=0$

Bielefeld-BNL-CCNU, PRD 93 (2016)014512

 $\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}) = \Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}=0) + \frac{1}{2!} \frac{\partial^{2} \Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{\partial \hat{\mu}_{B}^{2}} \Big|_{\hat{\mu}_{B}=0} \hat{\mu}_{B}^{2}$ $\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}) = \Sigma_{r}^{QB}(T_{f}=T_{f,0},\hat{\mu}_{B}) + \frac{d\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{dT} \Big|_{T_{f,0}} (T_{f}-T_{f,0})$

Ratio of $(M_Q/\sigma_Q^2)/(M_B/\sigma_B^2)$ can be expressed in terms of κ_2^f :

$$\begin{split} \Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B}) &= \Sigma_{r}^{QB}(T_{f,0},\hat{\mu}_{B}=0) + \left(\frac{1}{2!}\frac{\partial^{2}\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{\partial\hat{\mu}_{B}^{2}} - \kappa_{2}^{f}T_{f,0}\frac{d\Sigma_{r}^{QB}(T_{f},\hat{\mu}_{B})}{dT}\right)\Big|_{T_{f,0},\hat{\mu}_{B}=0} \hat{\mu}_{B}^{2} \end{split}$$
Experimentally
accessible
LQCD
To be
computable
determined
 $\hat{\mu}_{B}$ above can be replaced:
 $R_{12}^{B}(T_{f},\mu_{B}) \equiv \frac{M_{B}}{\sigma_{B}^{2}}(T_{f},\mu_{B}) = \frac{\partial R_{12}^{B}}{\partial\hat{\mu}_{B}}\Big|_{\hat{\mu}_{B}=0} \hat{\mu}_{B} + \mathcal{O}(\hat{\mu}_{B}^{3})$

$$\|_{R_{12}^{B,1}}$$

Temperature dependence of (N)LO expansion coefficients

NLO expansion of $M_Q/\sigma_Q^2/(M_B/\sigma_B^2) \equiv R_{12}^Q/R_{12}^B$:

 $\Sigma_r^{QB} = a_{12} \left[1 + \left(c_{12}^0(T_{f,0}) - \kappa_2^f D_{12}(T_{f,0}) \right) \left(R_{12}^B \right)^2 \right] + \mathcal{O}\left((R_{12}^B)^4 \right)$

Bielefeld-BNL-CCNU, PRD 93 (2016)014512

r=M_Q/M_B≈0.4 for describing AuAu or PbPb collision system

Comparison to experiment data

NLO expansion of $M_Q/\sigma_Q^2/(M_B/\sigma_B^2) \equiv R_{12}^Q/R_{12}^B$:

$$\Sigma_r^{QB} = a_{12} \left[1 + \left(c_{12}^0(T_{f,0}) - \kappa_2^f D_{12}(T_{f,0}) \right) \left(R_{12}^B \right)^2 \right] + \mathcal{O}\left((R_{12}^B)^4 \right)$$

From HRG at the freeze-out:

$$R_{12}^P = R_{12}^B / R_{12}^{B,1}$$

Upper bound on the curvature of the freeze-out line

$$\kappa_2^f \lesssim 0.011$$

Bielefeld-BNL-CCNU, PRD 93 (2016)014512

c.f. curvature of the crossover line: $\kappa_{2,c} \approx 0.006 - 0.013$

Conclusion & Summary

- The EoS is well controlled at $\mu_B/T \leq 2 \text{ or } \sqrt{s_{NN}} \geq 20 \text{ GeV}$
- We provided a framework that allows to determine the curvature of the freeze-out line through the direct comparison between experimental data and lattice QCD calculations of cumulant ratios
- At least for collision energy larger than 27 GeV it suggests that freeze-out happens close to the cross over & chiral phase transition line

谢谢!