0 and ϕ Meson Productions

イロト イポト イヨト イヨト

Outlook

1/19

Identified Hadron Productions in Heavy Ion Collisions at Large p_T Region

Wei Dai

Tsinghua University

In Collaboration With Xiao-Fang Chen, Han-Zhong Zhang, Ben-Wei Zhang and Enke Wang

August 24, 2016

Introduction	η Meson Productions	ρ^0 and ϕ Meson Productions	Outloo
	Ó	0	
	0	0	
	0	0	
	000000	0	

Based On

- W. Dai, X. F. Chen, B. W. Zhang and E. Wang, Phys. Lett. B 750, 390 (2015)
- S. Y. Chen, K. M. Shen, W. Dai, B. W. Zhang, H. Z. Zhang and E. K. Wang, Commun. Theor. Phys. 64, no. 1, 95 (2015)
- W. Dai, B. W. Zhang, H. Z. Zhang, and E. K. Wang, " ρ^0 and ϕ Meson Production at NLO", to be submitted

roduction	η Meson Productions	$ ho^{0}$ and ϕ Meson Productions
	0	0
	0	0
	0	0
	000000	0

Overview

Introduction

Large Momentum Meson Productions in Heavy ion Collisions

Formalism in p+p Collisions Formalism in A+A Collisions Nuclear Modification Factor in A+A Collisions η/π^0 ratio in A+A Collisions

ρ^0 and ϕ Meson Productions at larger momentum Initial Fragmentation Functions at initial Scale $Q^2=1.5~GeV^2$ ρ^0 and ϕ Productions in p+p Collisions at NLO ρ^0 and ϕ Productions in Pb+Pb Collisions at NLO ρ^0 and ϕ Productions in Au+Au Collisions at NLO

Outlook

Outlook

Introduction

Jet Quenching Observables

- Full Jet Observables
- Large Transverse Momentum Meson
- Heavy Quark

Outlook

Formalism in p+p Collisions

pQCD Improved Parton Model :

$$\begin{aligned} \frac{d\sigma_{pp}^{h}}{dyd^{2}p_{T}} &= \sum_{abcd} \int dx_{a} dx_{b} f_{a/p}(x_{a}, \mu^{2}) f_{b/p}(x_{b}, \mu^{2}) \\ &\times \frac{d\hat{\sigma}}{d\hat{t}}(ab \to cd) \frac{D_{h/c}^{0}(z_{c}, \mu^{2})}{\pi z_{c}} + \mathcal{O}(\alpha_{s}^{3}).(1) \end{aligned}$$

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

 η as the second well measured meson compared to $\pi^0.$

C. A. Aidala, F. Ellinghaus, R. Sassot, J. P. Seele and M. Stratmann, Phys. Rev. D **83**, 034002 (2011)

In AESSS parametrization because of the absence of enough data on inclusive η productions, the η FFs can not be extracted separately for each quark flavor without additional assumptions, and the assumption is made that all light quark fragmentations are the same.

Formalism in A+A Collisions

X. F. Chen, T. Hirano, E. Wang, X. N. Wang and H. Zhang, Phys. Rev. C 84, 034902 (2011) Cross section of the single hadron in HIC collisions could be expressed as:

$$\begin{aligned} \frac{1}{N_{\rm bin}^{AB}(b)} \frac{d\sigma_{AB}^{h}}{dyd^{2}p_{T}} &= \sum_{abcd} \int dx_{a} dx_{b} f_{a/A}(x_{a}, \mu^{2}) f_{b/B}(x_{b}, \mu^{2}) \\ &\times \frac{d\sigma}{d\hat{t}}(ab \to cd) \frac{\langle \tilde{D}_{c}^{h}(z_{h}, Q^{2}, E, b) \rangle}{\pi z_{c}} + \mathcal{O}(\alpha_{s}^{3}). \end{aligned}$$

The effective modifications of parton FFs in hot and dense medium:

$$\begin{split} \tilde{D}_{q}^{h}(z_{h},Q^{2}) &= D_{q}^{h}(z_{h},Q^{2}) + \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{0}^{Q^{2}} \frac{d\ell_{T}^{2}}{\ell_{T}^{2}} \\ &\times \int_{z_{h}}^{1} \frac{dz}{z} \left[\Delta \gamma_{q \to qg}(z,x,x_{L},\ell_{T}^{2}) D_{q}^{h}(\frac{z_{h}}{z},Q^{2}) \right. \\ &+ \Delta \gamma_{q \to gq}(z,x,x_{L},\ell_{T}^{2}) D_{g}^{h}(\frac{z_{h}}{z},Q^{2}) \right] (3) \end{split}$$

Assume all the energy loss of a fast parton is that carried away by the radiative gluon in the multiple scattering processes, the corresponding parton energy loss in the QCD medium can be expressed as:

$$\frac{\Delta E}{E_{(2)}} = \frac{N_c \alpha_s}{\pi} \int dy^- dz d\ell_T^2 \frac{(1+z)^3}{\ell_T^4}$$
$$\times \hat{q}_{\mathbf{R}}(E, y) \sin^2[\frac{y^- \ell_T^2}{4E \times (1-z)}] \qquad (4)$$

The jet transport parameter $\hat{q}_{R}(E, y)$ is related to the parton density distribution in the medium, therefore can characterizes the evolutionary medium properties.

Hirano full three-dimensional(3+1D)ideal

hydrodynamics has been employed.

η Meson Productions ρ^0 and ϕ Meson Productions	
0 0	
0 0	
• • •	
000000 0	

Nuclear Modification Factor in A+A Collisions W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

$R_{AB}(b) = \frac{d\sigma_{AB}^{h}/dyd^{2}p_{T}}{N_{hin}^{AB}(b)d\sigma_{pp}^{h}/dyd^{2}p_{T}}$ (5)

Questions:

- Even η meson is 4 times heavier than π⁰, a similar flat production suppression has been observed at RHIC in this p_T range independent of their mass?
- Can it be explained in one simple story that parton jets loss their energies first in the QCD medium and then fragment into hadrons in the vacuum?

Therefore:

hadron production ratio has been measured.

PLB(2015)

Outlook

η/π^0 ratio in A+A Collisions

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

PLB(2015)

Findings and more questions:

Confront with A. Morreale [ALICE Collaboration] arXiv:1512.05250

- Simple story that parton jets loss their energies first in the QCD medium and then fragment into hadrons in the vacuum can not explain everything.
- Similar trend could be seen at the RHIC and LHC that with the in- creasing of p_T , the η/π^0 ratio in A + A collisions comes closer to the p + p curve, and at very larger p_T two curves coincide with each other.
- In principle, a change of flavor compositions of parton jets may affect the ratio of η/π⁰ due to the fact that gluon jet suffers larger energy loss than quark jet in QCD medium.
- Why the increasing of the q₀ gives higher ratio of η/π⁰ in A + A?

 η Meson Productions

Outlook

η and π^0 FFs

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

PLB(2015)

- At very high p_T region, $D_{q \to \eta}/D_{q \to \pi^0}$ at $z_h = 0.7$ is approximately 0.5. (why same as η/π^0 rario?)
- At high p_T , quark FFs $D_{q \rightarrow \eta, \pi}0(z_h, Q = p_T)$ have a weak dependence on z_h and p_T in the typical z_h region 0.4 0.7 for identified hadron production

η Meson Productions	$ ho^{0}$ and ϕ Meson Productions
0	0
0	0
0	0
000000	0

Re-write the The Hadron Yield

• The hadron yield in p + p will be determined by two factors: the initial (parton-)jet spectrum $f_{q,g}(p_T)$ and the parton fragmentation functions $D_{q,g \to \eta,\pi^0}(z_h, p_T)$.

$$\frac{1}{p_T} \frac{d\sigma_{\pi^0,\eta}}{dp_T} = \int f_q(\frac{p_T}{z_h}) \cdot D_{q \to \eta,\pi^0}(z_h, p_T) \frac{dz_h}{z_h^2} + \int f_g(\frac{p_T}{z_h}) \cdot D_{g \to \eta,\pi^0}(z_h, p_T) \frac{dz_h}{z_h^2} .$$
(6)

Energy loss effect is to shift z_h of quark FFs in vacuum.

iction	η Meson Productions	$ ho^{0}$ and ϕ Meson Productions
	0	0
	0	0
	0	0
	000000	0

 η/π^0 ratio only considering gluon and quark in p+p

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

PLB(2015)

In the asymptotic region with $p_T \rightarrow \infty$:

$$R(\eta/\pi^{0}) = \frac{d\sigma_{\eta}}{dp_{T}} / \frac{d\sigma_{\pi^{0}}}{dp_{T}}$$

$$\approx \frac{\int f_{q}(\frac{p_{T}}{z_{h}}) \cdot D_{q \to \eta}(z_{h}, p_{T}) \frac{dz_{h}}{z_{h}^{2}}}{\int f_{q}(\frac{p_{T}}{z_{h}}) \cdot D_{q \to \pi^{0}}(z_{h}, p_{T}) \frac{dz_{h}}{z_{h}^{2}}}$$

$$\approx \frac{\Sigma_{q} D_{q \to \eta}(\langle z_{h} \rangle, p_{T})}{\Sigma_{q} D_{q \to \pi^{0}}(\langle z_{h} \rangle, p_{T})} . \quad (7)$$

- The yields of both π⁰ and η should also predominantly come from quarks.
- At very high p_T region, the ratios of η/π⁰ in both A + A and p + p should overlap with the one in e⁺e⁻ scattering, and reach a universal value ~ 0.5.

Outlook

η/π^0 ratio only considering gluon and quark in p+p

 For the transverse momentum p_T is not very high.

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

η/π^0 ratio only considering gluon and quark in A+A

W. Dai, X. F. Chen, B. W. Zhang and E. Wang,

PLB(2015)

- A naive expectation is that because gluon may give larger η/π^0 ratio than quark does, the larger suppression of gluons in the QCD medium will reduce η/π^0 , against calculation.
- The suppression of gluon in QCD medium imposes a larger reduction of the yield of π⁰ than that of η.
- We emphasize that the identified hadron yield in heavy-ion collisions relies on three factors: the initial hard jet spectrum, the energy loss mechanism, and parton fragmentation functions to the hadron in vacuum.

Initial Fragmentation Functions at initial Scale $Q^2=1.5~GeV^2$

Quark fragmentation functions into members of meson octet in terms of the SU(3) functions, α , β and γ . — H. Saveetha, D. Indumathi and S. Mitra, Int. J. Mod. Phys. A **29**, no. 07, 1450049 (2014)

fragmenting		K*+	fragmenting		K*0	
quark		K	quark		N I	
и	:	$\alpha + \beta + \frac{3}{4}\gamma$	и	:	$2\beta + \gamma$	
d	:	$2\beta + \gamma$	d	:	$\alpha + \beta + \frac{3}{4}\gamma$	
5	:	2γ	s	:	2γ	
fragmenting		ω/ϕ	fragmenting		<i>ρ</i> ⁰	
quark			quark		'	
и	:	$\frac{1}{6}\alpha + \frac{9}{6}\beta + \frac{9}{8}\gamma$	и	:	$\frac{1}{2}\alpha + \frac{1}{2}\beta + \frac{11}{8}\gamma$	
d	:	$\frac{1}{6}\alpha + \frac{9}{6}\beta + \frac{9}{8}\gamma$	d	:	$\frac{1}{2}\alpha + \frac{1}{2}\beta + \frac{11}{8}\gamma$	
5	:	$\frac{4}{6}\alpha + \frac{9}{6}\gamma$	5	:	$2\beta + \gamma$	
fragmenting			fragmenting			
quark		ρ	quark		p	
и	:	$\alpha + \beta + \frac{3}{4}\gamma$	и	:	2γ	
d	:	2γ	d	:	$\alpha + \beta + \frac{3}{4}\gamma$	
5	:	$2\beta + \gamma$	5	:	$2\beta + \gamma$	
fragmenting		<u>k*0</u>	fragmenting		K*-	
quark		N -	quark		n	
и	:	$2\beta + \gamma$	и	:	2γ	
d	:	2γ	d	:	$2\beta + \gamma$	
5	:	$\alpha + \beta + \frac{3}{4}\gamma$	s	:	$\alpha + \beta + \frac{3}{4}\gamma$	₽ ► < = ►

14 / 19

 η Meson Productions ρ^0 and ϕ Meson Productions \circ

Outlook

ho^0 and ϕ Productions in p+p Collisions at NLO

pQCD Improved Parton Model :

M. Hirai and S. Kumano,Comput. Phys. Commun. 183, 1002 (2012)

DGLAP evolution is considered to have the initial

FFs evolving with the scale Q^2 at NLO

To be submitted (2016)

 η Meson Productions

⁰ and ϕ Meson Productions

Outlook

ρ^0 and ϕ Productions in Pb+Pb Collisions at NLO

To be submitted (2016)

 η Meson Productions 0 0 0 0000000 ho^{0} and ϕ Meson Productions

Outlook

 ρ^0 and ϕ Productions in Au+Au Collisions at NLO

To be submitted (2016)

Introduction	η Meson Productions	$ ho^{0}$ and ϕ Meson Productions	Outlo
	Ó	0	
	0	0	
	0	0	
	000000	0	

Outlook

At the asymptotic region when $p_T \to \infty$ the ratios of η/π^0 in both Au + Au and p + p are almost determined only by quark jets fragmentation and thus approach to the one in e^+e^- scattering.

The almost identical gluon (quark) contribution fractions to η and to π result in a rather moderate variation of η/π^0 distribution at intermediate and high p_T region in A + A relative to that in p + p;

A slightly higher η/π^0 at small p_T in Au + Au can be observed due to larger suppression of gluon contribution fraction to π^0 as compared to the one to η .

Same framework to predict ρ^0 and ϕ meson.

ok

Introduction	η Meson Productions	$ ho^{0}$ and ϕ Meson Productions	Outlook
	0	0	
	0	0	
	0	0	
	000000	0	

Thank you!