第十二届全国粒子物理学术会议 2016.08.22-26, 合肥

on behalf of the LHCb collaboration

2016.08.22

Outline

- > Introduction
- > CPV in b sector
- > Rare B decay & lepton universality
- > Summary and outlook
 - Rare decays and CPV in c sector
 - talk by Liang SUN at 16:10, Tuesday
 - Exotic hadrons
 - talk by Liming ZHANG at 14:40, Tuesday

Are we satisfied with SM?

- The Standard Model (SM) works fantastically in a profound way, however, it is believed to be
 - An effective theory up to some scale
- Good reasons to believe that SM is incomplete and that New Physics (NP) beyond is needed
 - Missing dark matter candidate
 - CP violation for dynamical generation of Baryon Asymmetry in Universe (BAU) largely insufficient
 -
- We must search for
 - New particles & interactions
 - New sources of CPV

Opportunities in flavor sector

> Flavor as a window to NP, complementary to direct

searches

- > Exploring NP scale >> TeV
- > Distinguishing NP models

- NP could have significant effects in processes where SM contribution is suppressed and well understood
 - Mixing processes
 - > Rare loop decays
 - > SM forbidden decays

- Decay rates
- CP asymmetries
- Angular correlations

Precision measurements are essential!!

The power of precision

- Sensitive to "New" Physics effects off-shell
 - When was the Z boson discovered? \checkmark 1973 from $\nu N \rightarrow \nu N$? 1983 at SPS collider?
 - c quark needed to explain $K_L^0 o \mu^+\mu^-$ (GIM)
 - The 3^{rd} family (b,t) to explain CP violation (Kobayashi & Maskawa)
 -
- > Ingredients for where to look
 - Precise SM prediction
 - (desirable) Precise beyond-SM predictions
 - Good experimental precision

This is what the LHCb detector designed for

The LHCb collaboration

Physics goals of LHCb

The LHCb detector

Collision point

Beam

Beam

Acceptance $2 < \eta < 5$

Int. J. Mod. Phys. A 30 (2015) 1530022

Impact parameter:

Proper time:

Momentum:

Mass:

RICH $K - \pi$ separation:

Muon ID:

ECAL:

 $\sigma_{IP} = 20 \ \mu \text{m}$

$$\sigma_{\tau} = 45 \text{ fs for } B_s^0 \to J/\psi \phi \text{ or } D_s^+ \pi^-$$

$$\Delta p/p = 0.4 \sim 0.6\% (5 - 100 \text{ GeV}/c)$$

$$\sigma_m = 8 \text{ MeV}/c^2 \text{ for } B \to J/\psi X \text{ (constrainted m}_{J/\psi}\text{)}$$

$$\epsilon(K \to K) \sim 95\%$$
 mis-ID $\epsilon(\pi \to K) \sim 5\%$

$$\epsilon(\mu \to \mu) \sim 97\%$$
 mis-ID $\epsilon(\pi \to \mu) \sim 1 - 3\%$

$$\Delta E/E = 1 \oplus 10\%/\sqrt{E(\text{GeV})}$$

The LHCb detector

LHCb data taking

CPV in b sector

- $> a_{\rm sl}^q \text{ in } B \to D\mu\nu X$
- $\gt \sin 2\beta \text{ in } B^0 \to J/\psi K_S^0$
 - $\triangleright \phi_s$ measurements
- ightharpoonup Evidence of CPV in $\Lambda_h^0 o p\pi^-h^+h^-$

Neutral B mixing

> Weak states mix via box diagram: flavor oscillation

$$|B_q\rangle = |\overline{b}q\rangle$$

$$\ket{\overline{B}_q} = \ket{b\overline{q}}$$

$$ig|B_L^qig
angle = pig|B_qig
angle + qig|\overline{B}_qig
angle \ ig|B_H^qig
angle = pig|B_qig
angle - qig|\overline{B}_qig
angle$$

Mass eigenstates

$$\Delta m_q = m_H - m_L$$
, $\Delta \Gamma_q = \Gamma_L - \Gamma_H$

CPV observables

- CPV in mixing: $a_{\rm sl}^q$
- Mixing-induced GPV: ϕ_s , $\phi_d = 2\beta$

 $a_{\rm sl}^q$, ϕ_a and Δm_a are very sensitive to NP in mixing

$a_{\rm sl}^q$ results

- The D0 measurement yields an anomalous dimuon asymmetry [PRD 89 (2014) 012002], indicating a surprising deviation from SM in the (a_{sl}^d, a_{sl}^s) plane
- \triangleright LHCb measurements of a_{sl}^d and a_{sl}^s do not support the deviation

$Sin 2\beta$: a milestone of modern beauty physics

- First CPV in B decays observed by BaBar and Belle in 2001 [PRL 87 (2001) 091801/2]
- $> \sin 2\beta = 0.731 \pm 0.035 \pm 0.020$ LHCb, PRL 115 (2015) 031601
- > Indirect fit in SM: $\sin 2\beta = 0.771^{+0.017}_{-0.041}$

LHCb result is now competitive with B factories.

ϕ_s from $b-c\overline{c}s$ transitions

- A crucial goal of LHCb
 - 10% of b hadrons in pp collisions at the LHC are B_s^0 mesons
 - Measuring CPV in B_S^0 is the LHC(b) territory
- ho For $\phi_s \equiv -rg \left(\eta_{f_{CP}} rac{q}{p} \cdot rac{\overline{A}_{\overline{f}_{CP}}}{A_{f_{CP}}}
 ight)$ for $B_s^0 o J/\psi \phi$ decays
- ightharpoonup Precisely predicted in SM: $\phi_s^{\rm SM} = -0.038 \pm 0.001~{
 m rad}$
 - Up to small corrections due to penguin pollution
- \succ Very sensitive to NP in mixing: $m{\phi}_s = m{\phi}_s^{ ext{SM}} + m{\phi}_s^{ ext{NP}}$

$oldsymbol{\phi}_{\mathcal{S}}$ from $B_{\mathcal{S}}^0 o J/\psi \phi$, $J/\psi \pi^+\pi^-$

PRL 114 (2014) 041801

- $\phi_s = -0.010 \pm 0.039 \text{ rad}$
- Consistent with SM prediction:
 - $\phi_s^{SM} = -0.038 \pm 0.001 \, \text{rad}$
- Dominating world average
 - $\phi_s^{\text{HFAG}} = -0.030 \pm 0.033 \text{ rad}$
- > Still statistically limited

Mode	Dataset	$\phi_s^{c\bar{c}s}$	$\Delta\Gamma_s~(\mathrm{ps}^{-1})$	Ref.
$J/\psi \phi$	$9.6{\rm fb}^{-1}$		$+0.068 \pm 0.026 \pm 0.009$	Phys. Rev. Lett. 109, 171802 (2012)
$J/\psi \phi$	$8.0{\rm fb}^{-1}$	$-0.55^{+0.38}_{-0.36}$	$+0.163^{+0.065}_{-0.064}$	Phys. Rev. D85 , 032006 (2012)
$J/\psi \phi$	$4.9{\rm fb}^{-1}$	$+0.12 \pm 0.25 \pm 0.05$	$+0.053 \pm 0.021 \pm 0.010$	Phys. Rev. D90 , 052007 (2014)
$J/\psi \phi$	$14.3{\rm fb}^{-1}$	$-0.123 \pm 0.089 \pm 0.041$	$+0.096 \pm 0.013 \pm 0.007$	arXiv:1601.03297
above 2	combined	$-0.098 \pm 0.084 \pm 0.040$	$+0.083 \pm 0.011 \pm 0.007$	arXiv:1601.03297
$J/\psi \phi$	$19.7 \mathrm{fb}^{-1}$	$-0.075 \pm 0.097 \pm 0.031$	$+0.095 \pm 0.013 \pm 0.007$	Phys Lett B757 97-120 (2016)
$J/\psi K^+K^-$	$3.0{\rm fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	$+0.0805 \pm 0.0091 \pm 0.003$	3 Phys. Rev. Lett. 114, 041801 (2015)
$J/\psi \pi^+\pi^-$	$3.0{\rm fb^{-1}}$	$+0.070 \pm 0.068 \pm 0.008$	_	Phys. Lett. B736 , 186 (2014)
above 2	combined	$-0.010 \pm 0.039 (tot)$	-	Phys. Rev. Lett. 114, 041801 (2015)
$D_{s}^{+}D_{s}^{-}$	$3.0{\rm fb}^{-1}$	$+0.02 \pm 0.17 \pm 0.02$	_	Phys. Rev. Lett. 113, 211801 (2014)
ined		-0.033 ± 0.033	$+0.084 \pm 0.007$	
	$J/\psi \phi$ $J/\psi \phi$ $J/\psi \phi$ above 2 $J/\psi \phi$ $J/\psi K^+K^-$ $J/\psi \pi^+\pi^-$ above 2 $D_s^+D_s^-$	$\begin{array}{cccc} J/\psi\phi & 9.6\mathrm{fb^{-1}} \\ J/\psi\phi & 8.0\mathrm{fb^{-1}} \\ J/\psi\phi & 4.9\mathrm{fb^{-1}} \\ J/\psi\phi & 14.3\mathrm{fb^{-1}} \\ \mathrm{above}\ 2\ \mathrm{combined} \\ J/\psi\phi & 19.7\mathrm{fb^{-1}} \\ J/\psiK^+K^- & 3.0\mathrm{fb^{-1}} \\ J/\psi\pi^+\pi^- & 3.0\mathrm{fb^{-1}} \\ \mathrm{above}\ 2\ \mathrm{combined} \\ D_s^+D_s^- & 3.0\mathrm{fb^{-1}} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ϕ_s from more $b \to c \overline{c} s$ modes

- $>B_S^0 \to D_S^+ D_S^-$: [PRL 113 (2014) 211801]
 - $\phi_s = 0.02 \pm 0.17 \pm 0.02$ rad
- $> B_s^0 \to \psi(2S)\phi$: [arXiv:1608.04855]
 - $\phi_s = 0.23 \pm 0.17 \pm 0.02$ rad
- $ightarrow B_s^0
 ightarrow J/\psi \eta$: CP-even mode, lifetime measured: [LHCb-PAPER-2016-017]
 - $\tau(B_s^0 \to J/\psi \eta) = 1.479 \pm 0.034 \pm 0.011 \text{ ps}$
- More results is underway
 - $B_s^0 \rightarrow J/\psi K^+ K^-$ above $\phi(1020)$
 - $B_s^0 \rightarrow \eta_c \phi(1020)$
 - $B^0_s o J/\psi\phi$ with $J/\psi o e^+e^-$
 -

CPV in baryon decays: $\Lambda_b^0 o p \pi^- h^+ h^-$

- CPV has never been observed in the decays of baryons
- $\succ A_{CP}$ expected in charmless decays of Λ_b^0 by SM: $\sim 20\%$
 - Y. K. Hsiao et al, PRD 91 (2015) 116007
- \succ Contributions from tree and loop diagrams are comparable for $\Lambda_h^0 o p\pi^-h^+h^-$ decays

Triple product asymmetry

Search for CPV using Triple Product Asymmetry (TPA)

Triple products in the Λ_b rest frame:

$$rac{C_{\hat{T}}}{C_{\hat{T}}} = \vec{p}_p \cdot (\vec{p}_{h^-} imes \vec{p}_{h^+}) \propto \sin \Phi \ rac{C_{\hat{T}}}{C_{\hat{T}}} = \vec{p}_{\bar{p}} \cdot (\vec{p}_{h^+} imes \vec{p}_{h^-}) \propto \sin \Phi$$

T-odd asymmetries:

$$A_{\hat{T}} = \frac{N_{\Lambda_{b}^{0}}(C_{\hat{T}}>0) - N_{\Lambda_{b}^{0}}(C_{\hat{T}}<0)}{N_{\Lambda_{b}^{0}}(C_{\hat{T}}>0) + N_{\Lambda_{b}^{0}}(C_{\hat{T}}<0)}$$

$$\overline{A}_{\hat{T}} = \frac{N_{\overline{\Lambda}_{b}^{0}}(-\overline{C}_{\hat{T}}>0) - N_{\overline{\Lambda}_{b}^{0}}(-\overline{C}_{\hat{T}}<0)}{N_{\overline{\Lambda}_{b}^{0}}(-\overline{C}_{\hat{T}}>0) + N_{\overline{\Lambda}_{b}^{0}}(-\overline{C}_{\hat{T}}<0)}$$

CP-violating observable:

$$a_{\mathsf{CP}}^{\hat{\mathsf{T}}-\mathsf{odd}} = \frac{1}{2}(\mathsf{A}_{\hat{\mathsf{T}}} - \overline{\mathsf{A}}_{\hat{\mathsf{T}}})$$

P-violating observable:

$$a_{P}^{\hat{\mathsf{T}}-\mathrm{odd}} = \frac{1}{2}(\mathsf{A}_{\hat{\mathsf{T}}} + \overline{\mathsf{A}}_{\hat{\mathsf{T}}})$$

Signal yields of $\Lambda_b^0 o p\pi^-h^+h^-$

LHCb-PAPER-2016-030, in preparation

$$N_{\Lambda_b^0 \to p\pi^-\pi^+\pi^-} = 6646 \pm 105 (stat)$$

$$\mathsf{N}_{\mathsf{\Lambda}_\mathsf{b}^0 o \mathsf{p}\pi^-\mathsf{K}^+\mathsf{K}^-} = 1030 \pm 56 (\mathsf{stat})$$

First evidence for CPV in $\Lambda_h^0 o p\pi^- h^+ h^-$

LHCb-PAPER-2016-030, in preparation

> No significant CPV integrated over phase space

Λ_b^0 decay	$A_{\widehat{T}} \ [\%]$	$\overline{A}_{\widehat{T}}$ [%]	$a_{C\!P}^{\widehat{T} ext{-}\mathrm{odd}}\;(a_{P}^{\widehat{T} ext{-}\mathrm{odd}})\;[\%]$
$p\pi^-\pi^+\pi^-$	$-2.56 \pm 2.06 \pm 0.45$	$-4.86 \pm 2.06 \pm 0.44$	$-1.15(-3.71)\pm1.45\pm0.32$
$p\pi^-K^-K^+$	$-2.68 \pm 6.76 \pm 0.85$	$-4.55 \pm 6.07 \pm 0.52$	$-0.93(-3.62) \pm 4.54 \pm 0.42$

- \succ Results in bins of $|oldsymbol{\phi}|$
 - An evidence for localized CPV at the 3.3 σ level
 - Compatible with SM predictions

Rare B decay & lepton universality

- $>B_{s/d}^0 \rightarrow \mu^+\mu^-$
- $> B^0 \rightarrow K^+K^-$ (fully hadronic final states)
 - \triangleright Photon polarization in $b \rightarrow s \gamma$
- \triangleright Anomaly in $B^0 \to K^{*0} \mu^+ \mu^-$
 - \succ Lepton universality in $W^+
 ightarrow l^+
 u_l$
 - \triangleright Lepton universality in $B^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$: $R(D^*)$

Motivation

- $ightarrow b
 ightarrow s l^+ l^-$ transitions are FCNC processes, where
 - SM contributions is suppressed, while
 - NP effects could be large

- Lepton universality (LU)
 - In SM, ratios like R_K differs from unity only due to the difference of phase space

$$R_K \equiv \frac{\Gamma(B^+ \rightarrow K^+ \mu^+ \mu^-)}{\Gamma(B^+ \rightarrow K^+ e^+ e^-)}$$

Additional difference would imply LU

PRL 113 (2014) 151601

• $R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$, 2.6 σ discrepancy from unity

$$B_{s/d}^0 o \mu^+\mu^-$$

Very rare (and well described) in SM, since only loop contributions exist, e.g.

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)_{SM} = (3.66 \pm 0.23) \times 10^{-9}$$

NP, if existing, could have significant contributions through loops, e.g.

$$\mathcal{B}(B_s^0 o \mu^+ \mu^-)_{ ext{MSSM}} \propto \frac{m_b^2 m_l^2 an^6 \beta}{m_A^4}$$

$B^0_{s/d} ightarrow \mu^+ \mu^-$ chronology

LHCb&CMS combined results

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$$

6. 2 σ , first observation

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$$

 3.0σ , first evidence

SM expectations:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.23) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

$B^0 o K^+K^-$ observation & $B^0_S o \pi^+\pi^-$

LHCb-PAPER-2016-036, in preparation

- \triangleright Highly suppressed fully hadronic final states, only penguin annihilation and W-exchange contributions
 - · Test of QCD calculations, information of penguin pollution

- $\mathcal{B}(B^0 \to K^+K^-) = (7.8 \pm 1.3 \pm 0.8 \pm 0.2(\mathcal{B})) \times 10^{-8}$ (5.8 σ)
 The rarest B decay to hadronic final state ever observed!
- $\triangleright \mathcal{B}(B_s^0 \to \pi^+\pi^-) = (6.9 \pm 0.5 \pm 0.6 \pm 0.2(B) \pm 0.4(f_d/f_s)) \times 10^{-7}$

Photon polarization in $b \to s \gamma$

- The $b \rightarrow s \gamma$ transition is the mother of all penguins, where the emitted γ is predominantly left-handed in SM
- When right-handed NP particles entered the loop, the polarization of the γ would change, leading to observable effects, e.g.

- Mixing-induced CP violation [Atwood, Gronau, Soni, PRL79 (1997) 185]
- Decay rate of B_S^0 eigenstates [Muheim, Xie, Zwicky, PLB 664 (2008) 174]

$$P(t) \propto e^{-\Gamma_s t} \left\{ \cosh\left(\Delta \Gamma_s t/2\right) - \mathcal{A}^{\Delta} \sinh\left(\Delta \Gamma_s t/2\right) + \zeta \, \mathcal{C} \cos\left(\Delta m_s t\right) - \zeta \, \mathcal{S} \sin\left(\Delta m_s t\right) \right\}$$

 \mathcal{C} , \mathcal{S} and \mathcal{A}^{Δ} : functions of left- and right-handed γ polarization amplitude

First measurement of γ polarization in $B_s^0 o \phi \gamma$

LHCb-PAPER-2016-036, in preparation

- Polarized photons in $b o s\gamma$ first observed at LHCb in the decay $B^+ o K^+\pi^+\pi^-\gamma$ [LHCb, PRL112 (2014) 161801]
- $ilde{
 ho}$ Time-dependent decay rate measured in $B^0_s o \phi \gamma$

$$\Gamma_{B_s^0 o \phi \gamma}(t) \propto e^{-\Gamma_S t} \left[\cosh \left(\frac{\Delta \Gamma_S t}{2} \right) - \mathcal{A}^{\Delta} \sinh \left(\frac{\Delta \Gamma_S t}{2} \right) \right] \\ \mathcal{A}_{\text{SM}}^{\Delta} = 0.047_{-0.025}^{+0.029}$$

 24800 ± 300 : control mode

 $N_{\rm sig} = 4100 \pm 100$

First measurement of γ polarization in $B_s^0 o \phi\gamma$

LHCb-PAPER-2016-036, in preparation

Fit to
$$\Gamma_{B_s^0 o \phi \gamma}(t) \propto e^{-\Gamma_s t} \left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) - \mathcal{A}^{\Delta} \sinh \left(\frac{\Delta \Gamma_s t}{2} \right) \right]$$

$$\Rightarrow \quad \mathcal{A}^{\Delta} = -0.98^{+0.46}_{-0.52} + \frac{0.23}{0.20}$$

- Other parameters fixed to the HFAG values
- ightharpoonup Agree with the SM expectation in 2 σ ${\cal A}_{\rm SM}^{\Delta}=0.047^{+0.029}_{-0.025}$

$B^0 o K^{*0} \mu^+ \mu^-$

- Angular analysis of the decay can probe potential NP contributions
- > Observables include: A_{FB} , F_L , P'_i ,

- > First LHCb measurement used data of 1 fb⁻¹
 - [PRL 111 (2013) 191801]
- Recent update used full Run I data (3 fb⁻¹)

 JHEP 02 (2016) 104
- > S-wave contribution measured
 - $F_S = 0.101 \pm 0.017 \pm 0.009$ arXiv:1606.04731

P_5' anomoly in $B^0 o K^{*0} \mu^+ \mu^-$

JHEP 02 (2016) 104

- P_5' is theoretically clean
- > The tension with SM remains, a local discrepancy at $3.4\ \sigma$

Puzzles in $b \rightarrow s \mu^+ \mu^-$ branching fractions

Systematically lower than SM predictions in all channels

Lepton universality in $W \rightarrow l\nu$

arXiv:1608.01484

Agree with the SM prediction

Lepton universality in $B^0 o D^{*+} au^- ar{ u}_{ au}$

- $ightharpoonup Rig(D^{(*)}ig)$ sensitive to, e.g. charged Higgs
- With $au^- o \mu^u_ au^-\overline{
 u}_\mu$, and $\overline B{}^0 o D^{*+}\mu^-\overline{
 u}_\mu$ $^{B\{rac{\sigma}{q}=0\}}$ discriminated by kinematical variables: q^2 , E^*_μ , $m^2_{
 m miss}$
- $> R(D^*) = 0.336 \pm 0.027 \pm 0.030$
 - Above SM prediction at 2. 1 σ $\checkmark R(D^*) = 0.252 \pm 0.003$
 - Confirmed by BaBar/Belle

R(D) and $R(D^*)$ world average

 4σ above SM

Summary

- ➤ LHCb has performed many measurements with unprecedented sensitivity in various aspects: CPV, rare decays, Generally agree with SM well
- \triangleright A handful of $2-4\sigma$ deviations from SM observed, and further investigations needed from both theory and experimental sides

Summary

- ➤ LHCb has performed many measurements with unprecedented sensitivity in various aspects: CPV, rare decays, Generally agree with SM well
- \triangleright A handful of $2-4\sigma$ deviations from SM observed, and further investigations needed from both theory and experimental sides

Prospects

	LHC era			HL LHC era	
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)
Lumi	3 fb^{-1}	8 fb^{-1}	25 fb^{-1}	$50 \; \text{fb}^{-1}$	$*300 \text{ fb}^{-1}$

- Run-1 data still not fully explored, and many results with Run-2 data have been coming
- > LHCb upgrade comes already after Run-2
 - Instantaneous lumi will be raised by a factor of 5
 - Hardware triggers removed, running at 40 MHz
- > LHCb is starting to consider a 2nd upgrade for Run-5+
- Flavor physics will play a key role to fully understand SM and search for NP beyond with more precision

Thanks!

Backup slides

Heavy quarks at LHC

- hicktillright Large cross-sections of heavy flavor production at high energy pp collisions
 - $\sigma_{b\bar{b}} \simeq 300 500 \ \mu b @ 7 14 \ TeV$
 - $oldsymbol{\sigma}_{car{c}} \simeq \mathbf{15} \ \sigma_{bar{b}}$
- The (anti-)quark(s) in the $b\overline{b}$ ($c\overline{c}$) pair highly correlated
 - g + g fusion dominates

Where we are with CKM?

Constraints on NP from $b \rightarrow s \gamma$

 \nearrow $\mathcal{A}^{\Delta}(B_S^0 \to \phi \gamma)$ shows slight preference to non-zero $\mathrm{Re}(C_7'^{\mathrm{NP}})$ while the global fit does not show significant tension [A. Paul &D. Straub, arXiv:1608.02556]

