






# Higgs boson production in the four-lepton final state with CMS

中国物理学会高能物理分会第十二届全国粒子物理学术会议 2016 年 8 月 22 日至 26 日,合肥

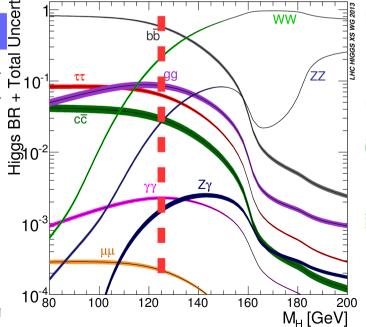
#### **Muhammad Ahmad**

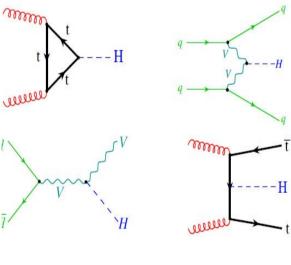
Institute of High Energy Physics, Chinese Academy of sciences On behalf of CMS and ATLAS Collaboration

#### Overview






The  $H \rightarrow ZZ^* \rightarrow 4\ell$  ( $\ell=e,\mu$ ) channel at the LHC:


- → Large S/B ratio, excellent resolution, complete reconstruction of the final state.
- → 'Golden channel' for discovery and property measurements. This talk will focus new CMS RUN II results with 12.9 fb<sup>-1</sup> collected in 2016
- → Similar sensitivity to H(125) as RUN I results New w.r.t Moriond'16 results:
- → New 6 categories sensitive to all 5 production modes
- → Fid. cross section and mass measurement with 2016 data
- → Width (onshell/onshell+offshell production)
- → Search for heavy Higgs-mass resonance (In Tong guang talk)

|   | ට 0 <sup>2</sup> | M(H)= 1                                     |              |
|---|------------------|---------------------------------------------|--------------|
| ) | [9d] (X+H 10     | $pp \rightarrow H (NNLO+NNLL QCD + NLO EW)$ | X2.0         |
|   | ± 10             | pp → qqH (NNLO QCD + NLO EW)                |              |
|   | 1 → dd)Ω         | WH (NNLO QCD + NLO EW)                      | X2.0<br>X2.1 |
|   |                  | p → ZH (NNLS SINI Q QCD in 5FS, NLO QCL     | X3.9         |
|   | 10 <sup>-1</sup> | pp → bbH (NNLO QCD + NLO EW)                |              |
|   | 40-2             |                                             | ]            |
|   | 10 <sup>-2</sup> | 6 7 8 9 10 11 12 13                         | 3 _14 15     |
| ) |                  |                                             | √s [TeV]     |

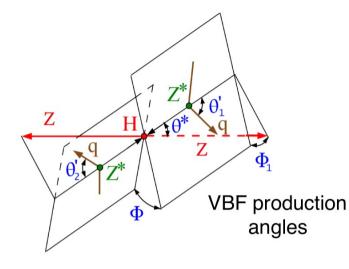
| Ref · | IS-PAS-HI | IG-16        | 2-U33 |
|-------|-----------|--------------|-------|
| 1 (61 |           | $\sim \pm 0$ |       |

| Decay channel         | Branching ratio [%] |
|-----------------------|---------------------|
| $H \rightarrow bb$    | $57.5 \pm 1.9$      |
| $H \to WW$            | $21.6 \pm 0.9$      |
| H	o gg                | $8.56 \pm 0.86$     |
| $H \to \tau \tau$     | $6.30 \pm 0.36$     |
| $H \to cc$            | $2.90 \pm 0.35$     |
| $H \to ZZ$            | $2.67 \pm 0.11$     |
| $H \to \gamma \gamma$ | $0.228 \pm 0.011$   |
| $H 	o Z \gamma$       | $0.155 \pm 0.014$   |
| $H 	o \mu \mu$        | $0.022 \pm 0.001$   |



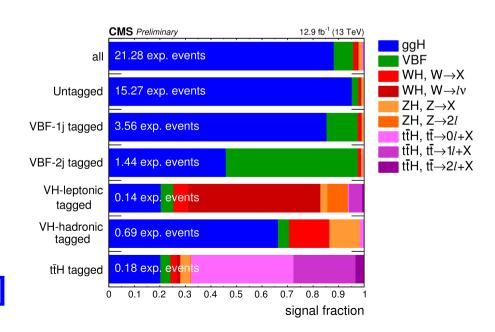


#### Events categories






Matrix-element (MELA) based discriminants are defined based on angular information of the event using JHUGen and MCFM


→ discriminants are sensitive to gg/qqbar → H production modes

$$\mathcal{D}_{ ext{bkg}}^{ ext{kin}} = \left[1 + rac{\mathcal{P}_{ ext{bkg}}^{ ext{q}\overline{ ext{q}}}(ec{\Omega}^{ ext{H}
ightarrow4\ell}|m_{4\ell})}{\mathcal{P}_{ ext{sig}}^{ ext{gg}}(ec{\Omega}^{ ext{H}
ightarrow4\ell}|m_{4\ell})}
ight]^{-1}$$



→ Other new discriminants for production modes are D<sub>1jet</sub>, D<sub>2jet</sub> (for VBF), D<sub>WH</sub>, D<sub>ZH</sub>
 We look for H(125) GeV in 6 events categories, based on number of jets, b tagged jets, additional leptons and cuts on discriminating variables
 More details in backup

**Expectation in [118, 130 GeV]** 



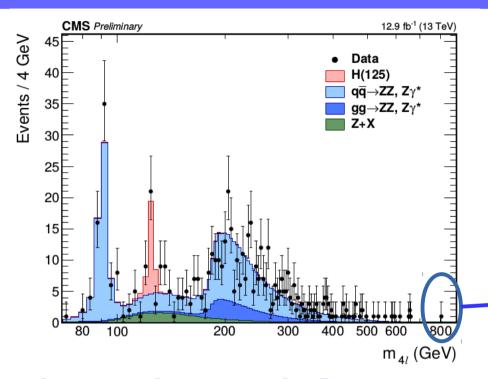
# Systematic uncertainties





| Su | mmary of relative systematic uncertainties     |
|----|------------------------------------------------|
|    |                                                |
|    | Company on a superior and a large containstica |

| Common experimental uncertainties                 |          |
|---------------------------------------------------|----------|
| Luminosity                                        | 6.2 %    |
| Lepton identification/reconstruction efficiencies | 6 – 11 % |


| Background related uncertainties                         |           |  |  |  |
|----------------------------------------------------------|-----------|--|--|--|
| QCD scale $(q\bar{q} \rightarrow ZZ, gg \rightarrow ZZ)$ | 3 – 10 %  |  |  |  |
| PDF set $(q\bar{q} \rightarrow ZZ, gg \rightarrow ZZ)$   | 3 – 5 %   |  |  |  |
| Electroweak corrections ( $q\bar{q} \rightarrow ZZ$ )    | 1 - 15 %  |  |  |  |
| $gg \rightarrow ZZ K factor$                             | 10 %      |  |  |  |
| Reducible background (Z+X)                               | 40 – 55 % |  |  |  |
| Event categorization (experimental)                      | 2 - 18 %  |  |  |  |
| Event categorization (theoretical)                       | 3 – 20 %  |  |  |  |

| Signal related uncertainties                                          |              |  |  |  |
|-----------------------------------------------------------------------|--------------|--|--|--|
| QCD scale $(q\bar{q} \rightarrow VBF/VH, gg \rightarrow H/t\bar{t}H)$ | 3 – 10 %     |  |  |  |
| PDF set $(q\bar{q} \rightarrow VBF/VH, gg \rightarrow H/t\bar{t}H)$   | 3 – 4 %      |  |  |  |
| $BR(H 	o ZZ 	o 4\ell)$                                                | 2 %          |  |  |  |
| Lepton energy scale                                                   | 0.04 – 0.3 % |  |  |  |
| Lepton energy resolution                                              | 20 %         |  |  |  |
| Event categorization (experimental)                                   | 2 – 15 %     |  |  |  |
| Event categorization (theoretical)                                    | 8 – 20 %     |  |  |  |

#### **Events selection**







Nice agreement between expected and observed events are found in 3 final states (4e,  $4\mu$ ,  $2e2\mu$ ) in the whole range of  $m_{41}$  distribution

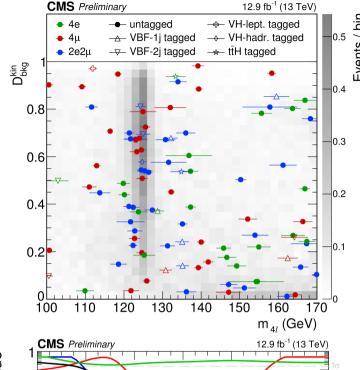
**Highest-mass candidate: 802 GeV** 

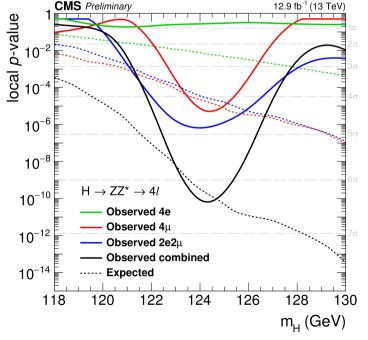
#### **Observed events in [118, 130 GeV]**

| Category                              | Untagged | VBF-1j | VBF-2j | VH-lept. | VH-hadr. | tŧH  | Total |
|---------------------------------------|----------|--------|--------|----------|----------|------|-------|
| qar q	o ZZ                            | 7.27     | 0.82   | 0.06   | 0.10     | 0.11     | 0.01 | 8.36  |
| gg 	o ZZ                              | 0.62     | 0.11   | 0.01   | 0.01     | 0.01     | 0.00 | 0.77  |
| Z + X                                 | 3.83     | 0.32   | 0.24   | 0.05     | 0.08     | 0.10 | 4.64  |
| Sum of backgrounds                    | 11.73    | 1.25   | 0.32   | 0.16     | 0.20     | 0.11 | 13.77 |
| Signal ( $m_{\rm H} = 125{\rm GeV}$ ) | 15.51    | 3.62   | 1.45   | 0.14     | 0.70     | 0.19 | 21.61 |
| Total expected                        | 27.24    | 4.87   | 1.77   | 0.30     | 0.90     | 0.30 | 35.38 |
| Observed                              | 29       | 1      | 2      | 0        | 1        | 0    | 33    |

# Significance results







Signal strength and p-values has been extracted in all 3 final states and 6 event categories by simultaneous fitting of 2D likelihood

$$\mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}) = \mathcal{L}(m_{4\ell}) \mathcal{L}(\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}|m_{4\ell})$$

Minimum p-value found at  $m_{H} = 124.3 \text{ GeV}$ 

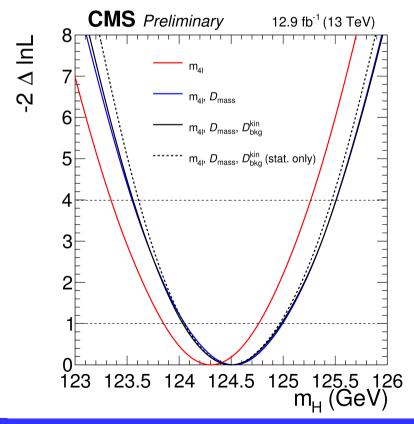
- $\rightarrow$  6.4 $\sigma$  obs. (6.3 $\sigma$  exp.) significance At m<sub>H</sub> = 125.09 GeV which is Run-1 CMS and ATLAS combination result
- $\rightarrow$  6.2 $\sigma$  obs. (6.5  $\sigma$  exp.) significance

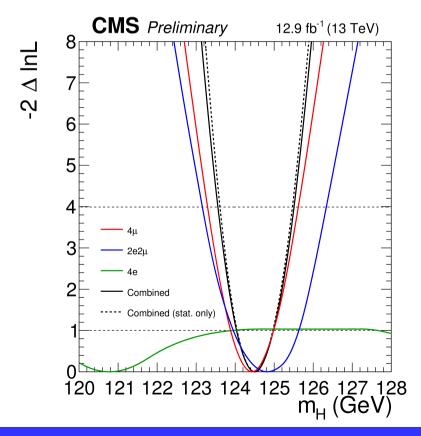




#### Mass measurement







Mass measurement is extracted using per event mass uncertainties which bring 8% improvement in mass resolution

→ Propagate per lepton momentum uncertainties to four lepton candidate corrected in data/MC using Z events

3D fit based on  $\mathcal{L}(m_{4\ell},\mathcal{D}_{
m mass},\mathcal{D}_{
m bkg}^{
m kin})$  profiling the signal strength  $\mu$ 

$$m_{H} = 124.50^{+0.47}_{-0.45}(stat.)^{+0.13}_{-0.11}(sys.)$$





## Signal strength results



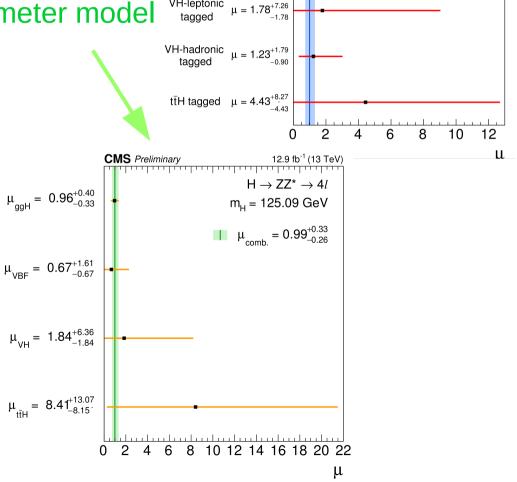
 $H \rightarrow ZZ^* \rightarrow 4l$ 

 $m_{LI} = 125.09 \text{ GeV}$ 

 $\mu_{comb.} = 0.99^{+0.33}_{-0.26}$ 

**CMS** Preliminary




Extracted Signal strength at  $m_{\perp} = 125.09 \text{ GeV}$ 

→ combined

$$\mu = \sigma/\sigma_{SM} = 0.99^{+0.33}_{-0.26}$$

Extracted signal strength for production modes in a 2 parameter model and a 4 parameter model



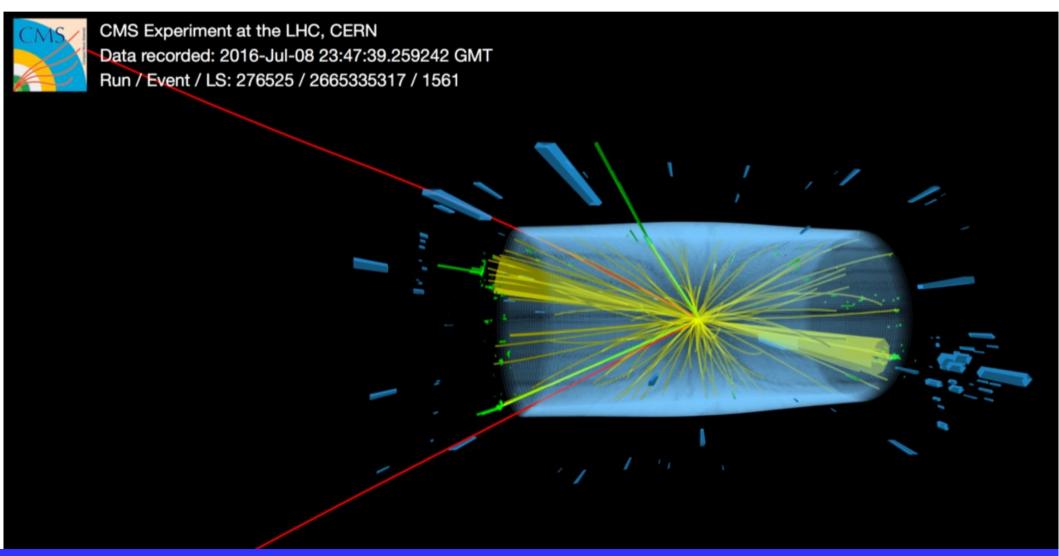


 $untagged \quad \mu = 1.24^{+0.43}$ 

VBF-2jet

tagged

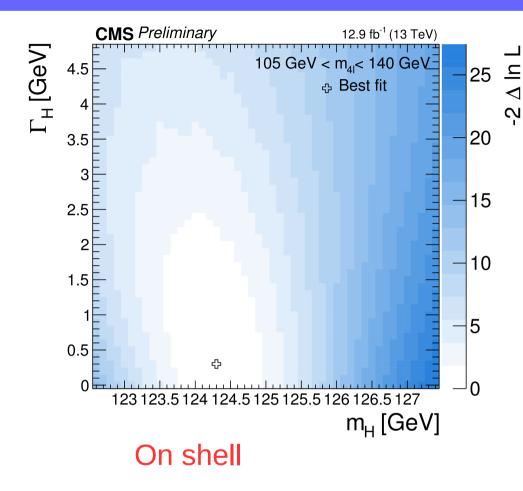
 $\mu = 0.00^{+0.16}$ 


 $\mu = 1.24^{+1.18}_{-0.71}$ 

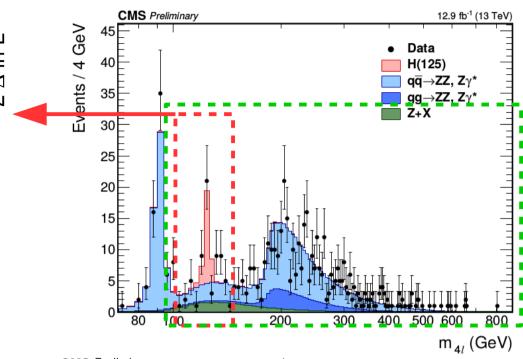
# VBF-2jet-tagged event

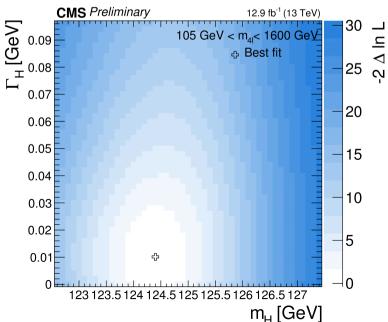





VBF-2jet-tagged  $H \rightarrow ZZ^* \rightarrow 2e2\mu$  candidate  $m_{4\ell} = 124.93$  GeV,  $D_{bkg}^{kin} = 0.694$ 



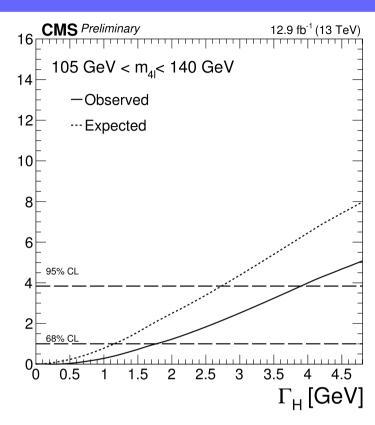

#### Width-mass measurement



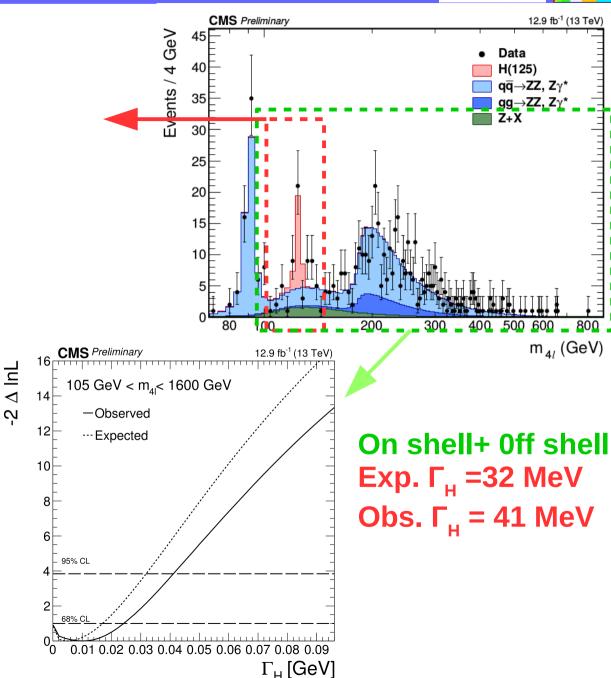










#### Width-mass measurement(cont.)







On shell Expected  $\Gamma_{\rm H}$  = 2.7 GeV Observed  $\Gamma_{\rm H}$  = 3.9 GeV



#### Fiducial cross section





The fiducial volume definition is chosen to closely match the reconstruction level selection, defined using leptons at the hard scattering level

| Requirements for the H $ ightarrow 4\ell$ fiducial phase space                  |                                      |  |  |  |  |
|---------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| Lepton kinematics and isolation                                                 |                                      |  |  |  |  |
| Leading lepton $p_{\rm T}$                                                      | $p_{\mathrm{T}} > 20\mathrm{GeV}$    |  |  |  |  |
| Sub-leading lepton $p_{\rm T}$                                                  | $p_{\mathrm{T}} > 10\mathrm{GeV}$    |  |  |  |  |
| Additional electrons (muons) $p_{\rm T}$                                        | $p_{\rm T} > 7  (5)  {\rm GeV}$      |  |  |  |  |
| Pseudorapidity of electrons (muons)                                             | $ \eta  < 2.5 (2.4)$                 |  |  |  |  |
| Sum of scalar $p_T$ of all stable particles within $\Delta R < 0.4$ from leptor | $< 0.4p_{\mathrm{T}}$                |  |  |  |  |
| Event topology                                                                  |                                      |  |  |  |  |
| Existence of at least two SFOS lepton pairs, where leptons satisfy of           | riteria above                        |  |  |  |  |
| Inv. mass of the $Z_1$ candidate                                                | $40 < m(Z_1) < 120 \text{GeV}$       |  |  |  |  |
| Inv. mass of the $Z_2$ candidate                                                | $12 < m(Z_2) < 120 \text{GeV}$       |  |  |  |  |
| Distance between selected four leptons                                          | $\Delta R(\ell_i \ell_i) > 0.02$     |  |  |  |  |
| Inv. mass of any opposite-sign lepton pair                                      | $m(\ell_i^+\ell_i^-) > 4 \text{GeV}$ |  |  |  |  |
| Inv. mass of the selected four leptons                                          | $105 < m_{4\ell} < 140\text{GeV}$    |  |  |  |  |

- > For jets,  $p^T>30$  GeV and  $|\eta|<4.7$
- > A crucial point is the inclusion of isolation in the fiducial selection
  - → Does not include neutrinos or FSR photons
  - → Without isolation, the difference in efficiency between production modes can be more than 50%

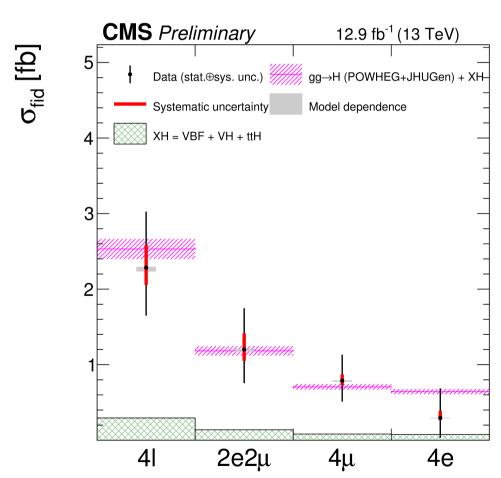
#### Fiducial cross section

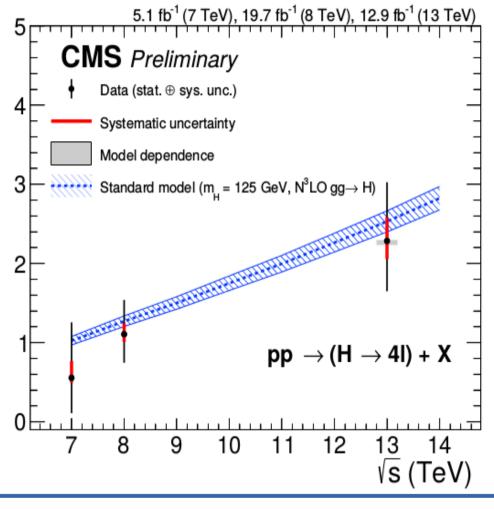




- Model dependence of the measurement procedure is estimated by repeating the measurement using the efficiencies and non-fiducial ratios from a range of different models of production
- We quote the full model dependence without any experimental constraints as a separate systematic effect

| Signal process                          | ${\cal A}_{ m fid}$ | $\epsilon$        | $f_{ m nonfid}$   | $(1+f_{\rm nonfid})\epsilon$ |  |  |  |
|-----------------------------------------|---------------------|-------------------|-------------------|------------------------------|--|--|--|
| Individual Higgs boson production modes |                     |                   |                   |                              |  |  |  |
| $gg \rightarrow H$                      | 0.371               | $0.608 \pm 0.001$ | $0.121 \pm 0.001$ | $0.682 \pm 0.002$            |  |  |  |
| VBF                                     | 0.422               | $0.614 \pm 0.002$ | $0.089 \pm 0.001$ | $0.669 \pm 0.002$            |  |  |  |
| WH                                      | 0.283               | $0.587 \pm 0.002$ | $0.241 \pm 0.003$ | $0.729 \pm 0.003$            |  |  |  |
| ZH                                      | 0.307               | $0.611 \pm 0.003$ | $0.207 \pm 0.004$ | $0.738 \pm 0.005$            |  |  |  |
| ttH                                     | 0.238               | $0.573 \pm 0.004$ | $0.593 \pm 0.011$ | $0.914 \pm 0.009$            |  |  |  |
|                                         |                     |                   |                   |                              |  |  |  |


#### Inclusive cross section results


م<sub>انا</sub> [fb]





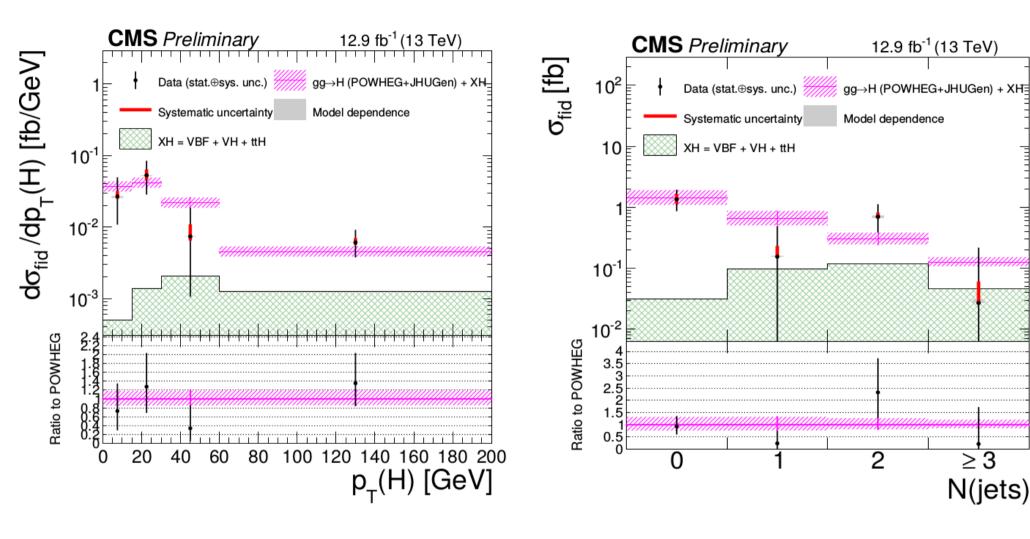
- The acceptance is calculated using Powheg at 13 TeV and HRes for 7,8 TeV
- All total cross sections taken from LHCHXSWG





$$\sigma_{\rm fid.} = 2.29^{+0.74}_{-0.64}({\rm stat.})^{+0.30}_{-0.23}({\rm sys.})^{+0.01}_{-0.05}({\rm model~dep.})~{\rm fb}$$

$$\sigma_{\rm fid.}^{\rm SM} = 2.53 \pm 0.13 \; {\rm fb}$$


#### Differential cross section results





≥3

N(jets)



Differential variables  $P_{\tau}(H)$  and N(jets)Sensitive to PDFs of colliding proton and relative contribution of different

Higgs boson production mechanisms

## Summary



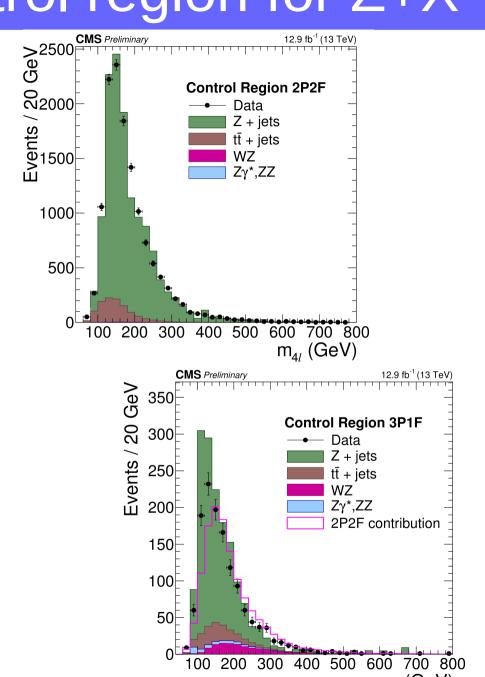


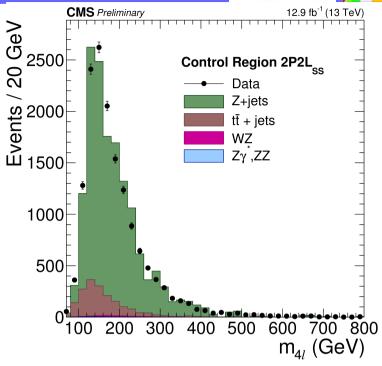
Measured complete set of Higgs boson properties using  $H \rightarrow ZZ^* \rightarrow 4\ell$  at  $\sqrt{s} = 13$  TeV using 12.9 fb<sup>-1</sup>

- → Rediscovered Higgs boson, significance observed 6.2 $\sigma$  (expected 6.9 $\sigma$ ) at m<sub>H</sub> = 125.09 GeV
- → Mass of Higgs boson measured to be  $124.50^{+0.47}_{-0.45}(stat.)^{+0.13}_{-0.11}(sys.)$
- $_{ o}$  combined signal strength  $\mu=\sigma/\sigma_{SM}=0.99^{+0.33}_{-0.26}$
- $\rightarrow$  Measured signal strength in all production modes  $\mu_{ggH}$  ,  $\mu_{VBF}$  ,  $\mu_{VH}$  , and  $\mu_{ttH}$
- ightarrow Measured Fid. Cross section  $\sigma_{\rm fid.} = 2.29^{+0.74}_{-0.64} ({\rm stat.})^{+0.30}_{-0.23} ({\rm sys.})^{+0.01}_{-0.05} ({\rm model \ dep.}) \ {\rm fb}$ 
  - → Differential measurements as function p<sup>T</sup>(H), N(Jets)

CMS is expected to record ~30-40 fb<sup>-1</sup> integrated luminosity (X3 times) by end of year New results would be published soon





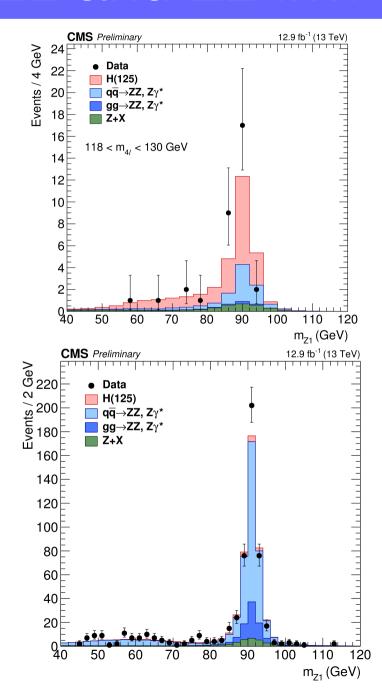


# Backup

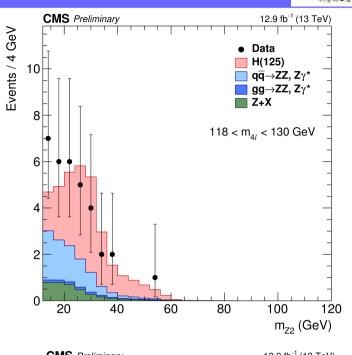
#### Control region for Z+X

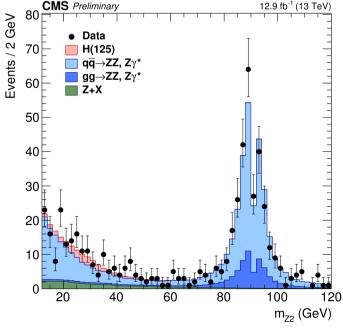








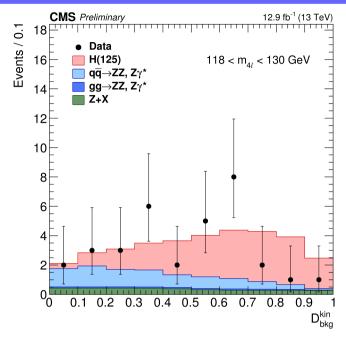


 $m_{4l}$  (GeV)

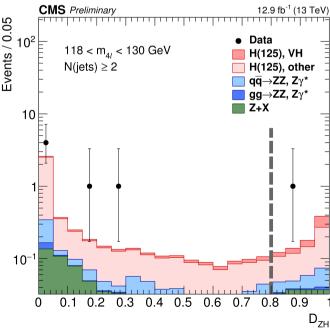

#### Z1 and Z2 inv. mass

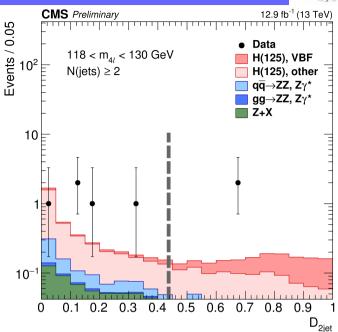


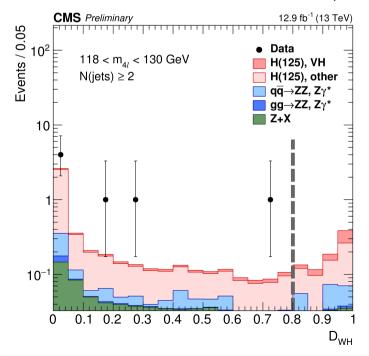








# Discriminants





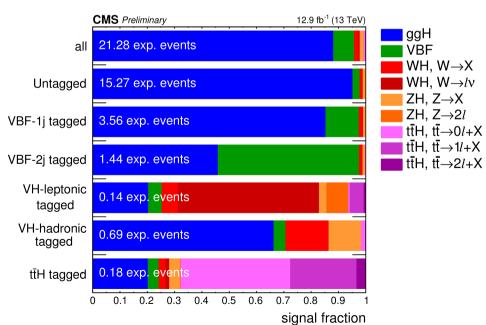









## **Event Categories**






6 mutually exclusive categories,

defined applying following criteria in this exact order:

- 1. exactly 4 leptons + {2-3 jets with ≤1 b-tag or ≥4 jets with 0 b-tag}
- + high D 2jet value → VBF-2jet tagged category
- 2. exactly ≥4 leptons + {2-3 jets with ≤1 b-tag or 4 jets with 0 b-tag}
- + high D WH or D ZH value;
- or 2-3 jets + 2 b-tags
- → VH-hadronic tagged category
- 3. ≤3 jets + 0 b-tag + {exactly 5 leptons or
- ≥1 pair of additional opposite-sign leptons};
- or 0 jet + ≥5 leptons
- → VH-leptonic tagged category
- 4. ≥4 jets + ≥1 b-tag;
- or ≥5 leptons → ttH tagged category
- 5. exactly 4 leptons + exactly 1 jet
- + high D 1jet value
- → VBF-1jet tagged category
- 6. other events → untagged category

