

Independent measurement of θ_{13} via neutron capture on hydrogen at Daya Bay

Xiangpan Ji (Tsinghua University) On behalf of the Daya Bay Collaboration CPS/HEP 2016

Reactor Antineutrinos

- Reactor is a free and rich $\overline{\nu}_e$ source
 - β-decays in a commercial fission reactor core produce ~ 10^{20} v/s
- $\overline{\nu}_e$ are detected via Inverse Beta Decay (IBD)

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

$$\begin{array}{c} +H \rightarrow D + \gamma & 2.2 \text{ MeV}, \ ^200 \text{ } \mu\text{s} \\ +Gd \rightarrow Gd^* \rightarrow \gamma' \text{s} & \ ^8 \text{ MeV}, \ \ ^30 \text{ } \mu\text{s} \end{array}$$

Prompt event: e^+ deposits energy and annihilates Delayed event: n thermalizes and captured on H or Gd **Two IBD samples: nH and nGd**

Extract θ_{13} from Far/Near relative measurment

$$\frac{N_f}{N_n} = \left(\frac{N_{\mathrm{p},f}}{N_{\mathrm{p},n}}\right) \left(\frac{L_n}{L_f}\right)^2 \left(\frac{\varepsilon_f}{\varepsilon_n}\right) \left[\frac{P_{\mathrm{sur}}(E,L_f)}{P_{\mathrm{sur}}(E,L_n)}\right]$$

- Far/Near relative measurement suppress reactor related uncertainties
- Functionally identical detectors to verify and reduce detector related errors

Daya Bay Experiment

Three sites

• Two near and one far

Antineutrnio detector (AD)

nH IBD Candidate Selection

Challenges relative to nGd:

- Low delayed energy 2.2 MeV
- Longer capture time 200 µs
- Larger accidental background
- Larger energy leakage in LS

The essential differences in IBD selection:

Prompt Energy [MeV]

IBD selection	nGd	nH
Prompt energy E _p	(0.7 <i>,</i> 12) MeV	(1.5 <i>,</i> 12) MeV
Delayed energy E _d	(6 <i>,</i> 12) MeV	(nH peak \pm 3 σ) for each AD
Coincidence time T _c	(1 <i>,</i> 200) μs	(1 <i>,</i> 400) μs
Coincidence distance D _c	N/A	< 50 cm

Accidental Background Subtraction

Accidental background spectrum:

- dental background Pair singles (>10 h separation) 1.
- 2.

$$R_{Acc} = R_s \cdot e^{-R_s T_c} \cdot R_s T_c e^{-R_s T_c}$$

Accidental background rate: $R_{Acc} = R_s \cdot e^{-R_sT_c} \cdot R_s T_c e^{-R_sT_c}$ R_s : singles rate		$= R_s T_c$	6 5 4 3 2	2	3	4 Prompt	5 6 t Energ	7 y [MeV	8 7]	9	10	10 ² 10 1	
Far hall	Fraction of IBD rate		6)										
	nGd	nH											
Accidental bkg.	2.1	116			>	50 ti	mes	larg	er tl	han	nG	d	

10

9

8

 10^{4}

Acc. Bkg. Spectrum

Accidental Subtraction Validation

Real double correlated events rarely have distance > 2m

A good accidental background prediction should reproduce both the rate and spectrum > 2 m

It is also validated by the neutron capture time distribution.

After Accidental Subtraction

Delayed spectrum

Other Backgrounds

Fast neutron: prompt energy below 12 MeV is extrapolated from higher energy and validated by MC and enriched fast neutron samples.

Am-C background: from calibration source is studied with a strong Am-C source and extrapolated to normal source intensities.

The delayed signals of all the three bkgs are induced by neutron capture

Far hall	Fraction of IBD rate (%)				
	nGd	nH			
Accidental	2.1	116			
⁹ Li/ ⁸ He	0.36	0.39			
Fast neutron	0.068	0.32			
Am-C	0.24	0.06			

• Expected number of IBDs in an AD from GdLS, LS, and acrylic volumes

$$N = \Phi \varepsilon_{\mu} \varepsilon_{m} \left[\sum_{v}^{\text{GdLS,LS,acry}} N_{p,v} \varepsilon_{E_{p},v} \varepsilon_{T,v} \varepsilon_{E_{d},v} \right] \varepsilon_{D}$$

- Φ : number of IBDs per target proton (cross section \otimes reactor $\overline{\nu}_e$ flux \otimes oscillation)
- > ε_{μ} (muon veto), ε_{m} (multiplicity cut), and N_{p} (number of protons): Well measured
- $\succ \quad \varepsilon_{E_p}$: prompt energy cut efficiency
- \succ ε_T : time cut efficiency
- $\succ \varepsilon_{E_d}$: delayed energy cut efficiency
- ε_D : distance cut efficiency

Dominant part (89%)

- to the overall AD-uncorrelated
- uncertainty

 $\epsilon_{E_p} \epsilon_T \epsilon_{E_d}$ are 14%, 50% and 5% in the GdLS, LS and acrylic volumes ϵ_D is 75%

Delayed Energy

- The mean and width of 3σ cut are determined for each AD
- Uncertainty is estimated with spallation neutron nH/nGd event ratios among near-site ADs
- Uncertainty is also estimated by nH-IBDs delayed spectra, consistent result observed
- 0.35% AD-uncorrelated uncertainty

Spallation neutron. EH1-AD1

Distance between Prompt and Delayed Vertices

• ε_D is determined by data After accidental background

subtraction, the distance distribution can be directly observed.

- Uncertainty of the efficiency is estimated by the relative difference among ADs.
- 0.4% AD-uncorrelated uncertainty

AD-uncorrelated uncertainty

	Uncertainties (%)	Correlation to nGd
Target protons ($N_{p,GdLS}$)	0.03	1
Target protons ($N_{p,LS}$)	0.13	0
Target protons ($N_{p,acry}$)	0.50	-
Prompt Energy (ε_{E_p})	0.10	1
Coincidence time(ε_T)	0.14	1
Delayed Energy (ε_{E_d})	0.35	0.07
Coincidence distance (ε_D)	0.40	0
Combined	0.57	0.07

- All the uncertainties are data-driven estimated
- Largest uncertainties
 - Delayed energy cut
 - Distance cut
- Correlation with nGd
 - Distance cut, not used for nGd
 - Delayed energy cut,
 nH: floating 3σ cut
 nGd: fixed at (6, 12) MeV

A "detector related" coupling of 0.07 indicates an independent measurement

CPS/HEP 2016

$\sin^2 2\theta_{13}$ Result

- nH rate analysis, χ^2 fitting with full pull terms gives $\sin^2 2\theta_{13} = 0.071 \pm 0.011$ with $\chi^2/\text{NDF} = 6.3/6$
- Between nH- and nGd-IBD analysis, an overall correlation coefficient value is estimated at 0.02
- Combined with the Daya Bay nGd rate+shape result (same period) $(\sin^2 2\theta_{13} = 0.084 \pm 0.005, PRL 115, 111802)$
 - $\rightarrow \sin^2 2\theta_{13} = 0.082 \pm 0.004$

 $\begin{array}{l} {\rm Strong\ independent}\\ {\rm observation\ of\ reactor}\\ {\rm neutrino\ oscillation\ and}\\ \theta_{13} {\rm\ measurement} \end{array}$

Comparison of θ_{13} Measurement

- The nH measurement is consistent with nGd at Daya Bay
- The most precise nH measurement yielding θ_{13} and one of the most precise measurement overall

Summary

- An independent observation of reactor $\overline{\nu}_e$ oscillaiton
- The most precise nH measurement yielding θ_{13}
- The precision of $\sin^2 2\theta_{13}$ is improved with combination
- nH shape analysis is in progress, $|\Delta m^2_{ee}|$ and better precision in $\sin^2 2\theta_{13}$
- Several key methods (Accidental bkg, data-driven detector uncertainty) have been developed and can be applied in other experiments using nH IBDs, e.g. JUNO, RENO-50

Thank you!

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha,i} |\nu_{i}\rangle$$
How they interact
How they propagate
$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P_{\vec{\nu}_{e} \rightarrow \vec{\nu}_{e}} = 1 - \frac{\sin^{2} 2\theta_{13} \sin^{2} \left(\Delta m_{ee}^{2} \frac{L}{4E}\right)}{\int_{\nu_{1}}^{\nu_{2}} \frac{\Delta m_{eo}^{2}}{1} \int_{\nu_{1}}^{\nu_{3}} \frac{1}{\sqrt{2}} \int_{\mu_{eo}^{2}}^{\mu_{3}} \frac{1}{\sqrt{2}} \int_{\mu_{eo}^{2}}^{\mu_{2}} \frac{1}{\sqrt{2}} \int_{\mu_{eo}^{2}}^$$

 $\Delta m_{\rm atm}^2$

Normal hierarchy

 ν_{τ}

2016/8/22

 m^2

 Δm_{atm}^2

 $\nu_{\mu} \square$

Inverted hierarchy

Ve 🔲

Other Backgrounds

(1) 9Li/8He background

(2)Fast-neutron background

(3) Am-C calibration source background

• Studied with a strong Am-C source and extrapolated to the normal calibration source intensities.

9Li/8He Background

- The background is induced by cosmogenic muons
- The time between 9Li/8He events are correlated with the muons
- The background was estimated by modeling the time correlation

The background was estimated as the number of events within the prompt energy selection window in the normalized OWS-identified

Fit function:
$$N(E) = N_0 \left(\frac{E}{E_0}\right)^{-a - \frac{E}{E_0}}$$

Consistent spectrum distribution

Prompt Energy

- ε_{E_p} is estimated by MC
- Uncertainty of the efficiency is estimated with energy scale differences at nH gamma and ²¹²Bi alpha peaks among ADs
- 0.10% AD-uncorrelated uncertainty
- Oscillation effect is considered
 - Shape of neutrino energy spectrum changes with baseline
 - Without correction, the $\sin^2 2\theta_{13}$ result is about 4% larger

0.14% AD-uncorrelated uncertainty in total

Electronics induced uncertainty estimated by 214 Bi sample < 0.1%

 $1 \mu s$ cut induced uncertainty 0.1%

- Measured n_i (each isotope's number density) different among ADs induce 0.02% uncertainty

Neutron Capture Time

- ε_T is estimated by MC
- Intrinsic uncertainty

$$\frac{1}{\tau} = \frac{v_n}{\lambda} = v_n \sum_i n_i \sigma_i(v_n)$$

