

The weak mixing angle sin²θ_W measurement at hadron colliders

Liang Han¹, Minghui Liu¹, Siqi Yang², Hang Yin³, Junjie Zhu⁴

¹ University of Science and Technology of China
 ² University of Iowa
 ³ Normal University of Central China
 ⁴ University of Michigan

标准模型电弱机制

▶基本物理常数:

$$\alpha = \frac{e^2}{4\pi}; \quad G_F = \frac{\pi\alpha}{\sqrt{2}M_W^2 \sin^2\theta_W}; \quad M_Z = \frac{M_W}{\cos\theta_W}; \quad M_W = \frac{g\nu}{\sqrt{2}}; \quad m_H = 2\nu\sqrt{\lambda};$$
$$sin^2\theta_W = \frac{e^2}{g^2} = 1 - \frac{M_W^2}{M_Z^2} \quad \text{(on-shell)}$$

▶ 弱中性流耦合:
e⁺
i - i
i - i
g_V
f
y⁺
i - i
i - i
g_V
f
g_V
f
(Born level树图阶)
j
g_A
f
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j </

有效弱混合角

▶理论预言:

• High order corrections absorbed into EBA(Effective Born Approximation), i.e. flavor-related effective couplings as

$$\sin^2 \theta_{\text{eff}}^f = \operatorname{Re}(\kappa_f) \sin^2 \theta_{W} = \frac{1}{4|Q_f|} \left(1 - \frac{\operatorname{Re}[g_V^f]}{\operatorname{Re}[g_A^f]} \right)$$

• Complete EW corrections up to 2-loop orders [JHEP0611,048] included in ZFITTER etc.

• The effective mixing angle: converged to leptonic

$$sin^{2}\theta_{\text{eff}}^{\text{Lept}} = \text{Re}[\kappa_{l}(M_{Z})] \cdot sin^{2}\theta_{W} - \frac{\sin^{2}\theta_{\text{eff}}^{u} \approx \sin^{2}\theta_{\text{eff}}^{l}}{\sin^{2}\theta_{\text{eff}}^{d} \approx \sin^{2}\theta_{\text{eff}}^{l}}$$

$$(effective)$$

-0.0001,

-0.0002.

 ≈ 0.0014 ,

电子对撞机LEP/SLD测量标准

> The most precise results, LEP b-quark vs SLD lepton LR , differ 3.2σ

> The LEP/SLD World Average : 0.23153 ± 0.00016

标准模型电弱机制自洽检验

\succ M_W determination:

 80.385 ± 0.015 (LEP&Tev Direct) vs. 80.363 ± 0.020 (LEP Indirect)

SM inconsistency? Need new experimental inputs!

间接探测新物理效应

> Oblique parameter S, T and U: [EPJC74 (2014) 3046]

Hits of New Physics? Need new experimental inputs!

强子对撞机Tevatron测量

▶DØ实验正负电子前后不对称测量

 Run2a 1fb⁻¹:验证可行性 0.2326±0.0018(stat.)±0.0006 (syst.)
 PRL101 (2008)191801

② Run2b 5fb⁻¹: 系统误差控制
 0.2309±0.0008(stat.)±0.0006 (syst.)
 PRD84 (2011)012007

Tevatron ceased operations on 2011/09/30 with 9.7fb⁻¹ data recorded at DØ

③ Run2 9.7fb-1: 电子刻度新方法

 0.23147 ± 0.00043 (stat.) \pm 0.00008 (syst.) \pm 0.00017 (theory)

PRL115 (2015)041801

▶DØ实验早期测量结果

 $\sin^2\theta_{\rm W} = 0.2309 \pm 0.0010$ measured @ D0 5fb⁻¹

▶ PDG引用 "Electroweak model and constraints on new physics"

▶DØ实验5fb-1误差分析

$0.2310\,\pm\,0.0008\,\pm\,0.0006$

▶DØ实验9.7fb⁻¹估计

	$\sin^2\theta_{\rm W} \pm \text{stat.} \pm \text{syst.}$
DØ 5fb ⁻¹ measured	$0.2310 \pm 0.0008 \pm 0.0006$
DØ 9.7fb ⁻¹ expected	$? \pm 0.0006 \pm 0.0006$
	systematic would be comparable/dominant

▶ DØ实验9.7fb⁻¹测量改进:

Novel electron calibration + Extension of detector coverage

▶ DØ实验9.7fb⁻¹测量结果

Preliminary Tevatron Combination*

	$\sin^2\theta_{W} \pm \text{stat.} \pm \text{syst.} \pm \text{PDF}$	
CDF 9fb ⁻¹ Zµµ	$0.2315 \pm 0.0009 \pm 0.0002 \pm 0.0004$	PRD 89,072005 (2014)
DØ 9.7fb ⁻¹ Zee	$0.23147 \pm 0.00043 \pm 0.00008 \pm 0.00017$	PRL115,041801(2015)
CDF 9fb ⁻¹ Zee	$0.23248 \pm 0.00049 \pm 0.00004 \pm 0.00019$	PRD 93,112016 (2016)

 $\Rightarrow \sin^2 \theta_{\rm W} = 0.23179 \pm 0.00035$

 $\sim 21\%$ of LEP/SLD Average precision

M_W determination:
 80.385 ± 0.015 (Direct)
 80.351 ± 0.018 (Latest Tevatron Indirect)

* Presented at ICHEP2016 http://indico.cern.ch/event/432527/contributions/2212775/

强子对撞机LHC测量

Dilution of pp collision:

 $\sin^2\theta_{\rm W} = 0.2308 \pm 0.0005$ (stat.) ± 0.0012 (syst.)

measured @ ATLAS 7TeV 4.8fb⁻¹ ee(CC/CF)+µµ

▶ ATLAS实验7TeV 4.8fb⁻¹误差分析

$0.2308 \pm 0.0005 \pm 0.0012$

▶LHCb实验7/8TeV 1/2fb⁻¹测量

 $\sin^2 \theta_{W} = 0.23142 \pm 0.00073$ (stat.) ± 0.00052 (syst.) ± 0.00056 (theory)

State of the art of $\sin^2\theta_W$

		+	LEP and SLD Average 0.23153 ± 0.00016		
	A ^{0, 1}	•••	$\textbf{0.23099} \pm \textbf{0.00053}$		
	Α_I(Ρ_τ)	•	0.23159 ± 0.00041		
	A _{ir} (SLD)	•	$0.23098\ \pm\ 0.00026$		
	А ^{0, b}	•	0.23221 ± 0.00029	I HCb·	
	A ^{0, c}	-	→ 0.23220 ± 0.00081	• most pracisa massurament	
	Q ^{had} fb	-	→ 0.2324 ± 0.0012	• most precise measurement	
	A ^{ee} _{FB} (CDF), 9.4 fb ⁻¹	н	• 0.2325 ± 0.0005		
	Α _{FB} ^{μμ} (CDF), 9 fb ⁻¹	- <mark></mark>	• 0.2315 ± 0.0010		
	A _{FB} (LHCb), Pre	<mark>-</mark> -	• 0.2314 ± 0.0011	DØ:	
	A ^{μμ} _{FB} (CMS), 1.1 fb ⁻¹	•	0.2287 ± 0.0032	•most precise measurement at	
	A ^I _{FB} (ATLAS), 4.8 fb ⁻¹	• •• •	0.2308 ± 0.0012	hadron colliders	
	A ^{ee} _{FB} (DØ), 9.7 fb ⁻¹	<mark>.</mark>	0.23147 ± 0.00047	•comparable to the best LEP	
L	0.22	0.23	0.24	and SLD's results	
		sin²	θ_{eff}^{I}		

研究计划与展望

➤ Tevatron: Fulfill DØ meas

Fulfill DØ measurement in $Z \rightarrow \mu\mu$ to achieve the Tevatron Legacy

≻ LHC:

Estimation of 13/14TeV 2017-2018 Run1 data, single experiment and single channel^{1,2,3}

 $\Delta \sin^2 \theta_{\rm W} = 0.00011 \text{ (stat.)} \pm 0.00014 \text{ (PDF)} \pm \mathbf{X} \text{ (syst.)}$

reduce lepton uncertainties ~ $10^{-3} \rightarrow 10^{-5}$

ΔM_W (Indirect) ~ \pm 9 MeV

¹ A. Bodek et al, Eur. Phys. J. C (2016) 76,

² M.H. Liu et al, 23 May 2016, ATLAS SM W/Z meeting, "Precise $\sin^2\theta_W$ with 13TeV data" ³ S.Q. Yang et al, 18 July 2016, ATLAS SM W/Z meeting, " $\sin^2\theta_W$ @ method of the analysis"

Backup slides

$$\begin{split} L &= g_{hff} \bar{f} H f + \frac{g_{hhh}}{6} H^3 + \frac{g_{hhhh}}{24} H^4 + \eta_v V_\mu V^\mu \big(g_{hvv} H + \frac{g_{hhvv}}{2} H^2 \big) \\ g_{hff} &= \frac{m_f}{v} \,, \quad g_{hvv} = \frac{m_v^2}{v} \,, \quad g_{hhvv} = \frac{2m_V^2}{v^2} \,, \quad g_{hhh} = \frac{3m_H^2}{v} \,, \quad g_{hhhh} = \frac{3m_H^2}{v^2} \end{split}$$

CEPC: 250GeV ZH $\rightarrow g_{ZZh}$

ILC: $350 \text{GeV ZHH} \rightarrow g_{ZZhh}, g_{hhhh}$ $375 \text{GeV HHH} \rightarrow g_{ZZh}$ $500 \text{GeV ZHHH} \rightarrow g_{ZZhh}, g_{hhhh}, g_{hhhhh}$

有效弱混合角

▶理论预言:

• High order corrections absorbed into EBA(Effective Born Approximation), i.e. flavor-related effective couplings as

$$\sin^2 \theta_{\text{eff}}^f = \operatorname{Re}(\kappa_f) \sin^2 \theta_{W} = \frac{1}{4|Q_f|} \left(1 - \frac{\operatorname{Re}[g_V^f]}{\operatorname{Re}[g_A^f]} \right)$$

• Complete EW corrections up to 2-loop orders [JHEP0611,048] included in ZFITTER etc.

Indirect constraints on g_{Zhh} and g_{ZZhh} and new physics

CEPC: 90GeV Z \rightarrow A_{FB}(b/Bc, τ -pol), A_{L/R} 160GeV WW \rightarrow direct M_W 180GeV ZZ \rightarrow calibration 250GeV ZH \rightarrow $g_{7.7h}$