

Temperature Dependence of CdMoO₄ Scintillation Properties

--- a new material for Neutrinoless Double Beta Decay

Mingxuan Xue, Yunlong Zhang, Haiping Peng, Zizong Xu, Xiaolian Wang

University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics

August, 2016

Outline

- Motivation
- Research Method
- □ Present Work
- **D** Conclusion
- Next to do

Neutrinoless double beta decay (0vDBD)

Motivation

41

專

¥

LE

育主部

Why 0vDBD is important

- \Box $\Delta L = 2$ new physics beyond SM
- \square Absolute neutrino mass scale (v oscillations give only $m^2(v_i) m^2(v_j)$)
- v is Majorana or Dirac particle (Majorana gives see-saw mechanism to explain smallness of v masses).....

Next generation of 0vDBD experiments will use different technologies and approaches:

Research Method 中国科学技术大学 University of Science and Technology of China

Detector choice

Scintillating bolometers

Properties of bolometers Wide choice of different absorber material

- High energy resolution FWHM
- Low energy threshold for particle detection
- Particle identification capability in hybrid measurements of heatlight or hear-ionization energies.
- tech. suggested in 1985 by E. Fiorini and T.O. Niinikoski
- the first Te detector worked in 1989
- first bolometric DBD experiment in 1997
- predecessor of CUORICINO : 20 crystal array (MiDBD)
- other applications: Dark Matter detection (CDMS, Edelweiss, CRESST)

The Scintillating Bolometer

Properties of $^{100}_{42}Mo$ and $^{116}_{48}Cd$

	Qββ	Isotopic	
Isotope	(MeV)	abundance (%)	
48Ca	4.27	0	
76Ge	2.04	7.8	
825e	3	9.2	
96Zr	3.35	2.8	
100Mo	3.03	9.6	
116Cd	2.8	7.5	
128Te	0.87	31.7	
130Te	2.53	34.5	
136Xe	2.48	8.9	
150Nd	3.37	5.6	

CdMoO₄ crystal from NingBo University

NingBo University: $\phi 20.8 \times 16.5mm$ M = 34.8g

Density: $6.207g/cm^3$

[]/]///////////////////////////////////	////////	//////	/////	///////
	///////	<u> </u>	<u>/////</u> //	
		Crystal		
		5.44cm		
		Air 20cm		
	1///////	<u>20cm</u>	777///	
		Cel		
///////////////////////////////////////		22 3 7////		

Detector Construction

1kg 100% enriched ¹¹⁶Cd¹⁰⁰MoO₄

Parent Isotope	$T_{1/2}$ (years)	t = 100(years)	
¹⁰⁰ Mo	$2v\beta\beta$ (7.1 ± 0.4) × 10 ¹⁸	2.0996641×10^{7}	
	$\begin{array}{c} 0 \mathrm{v} \beta \beta \\ 1.1 \times 10^{24} \end{array}$	136	
¹¹⁶ Cd	$2v\beta\beta$ (2.9 ± 0.2) × 10 ¹⁹	5.140557×10^{6}	
	$0 \nu \beta \beta \\> 1.7 \times 10^{23}$	878	

□ For the decay process of ${}^{100}_{42}Mo$ and ${}^{116}_{48}Cd$, the initial kinematics of the two emitted electrons are given by DECAYO event generator.

(1

Internal backgrounds (U/Th chains)

Backgrounds ²¹⁴Bi (U-238 chain) and ²⁰⁸Tl (Th-232 chain) 0.1mBq/kg: N = $0.1 \times 10^{-3} \times 1 \times 365 \times 24 \times 3600 \times 100 = 3.1536 \times 10^{5}$

Elsevier B. V, et al., "Development of $CaMoO_4$ crystal scintillators for a double beta decay experiment with ^{100}Mo ," 10 Nuclear Instruments and Methods in Physics Research A 584 (2008) 334-345

□ Bi214 with 0.1mBq/kg

 $^{214}Bi (Q_{\beta} = 3.27 MeV, T_{1/2} = 20 min) \rightarrow ^{214}Po(Q_{\alpha} = 7.83 MeV, T_{1/2} = 169 \mu s)$

41

理音主副

Use a $\frac{1}{1}$ time window to suppress the background from ^{214}Bi , the red line is not use the coincidence method.

Peaks:
$${}^{210}Pb (147keV) \xrightarrow{\beta \ decay(Q=63.5keV)} {}^{210}Bi(147keV, T_{1/2} = 5.012D) {}_{11}$$

Use the $\frac{4\pi}{200}$ gamma veto system to decrease external background from $\frac{208}{1}$, the red line is not use the veto method.

 $^{208}Tl \ (Q_{\beta} = 5 MeV) \rightarrow ^{208}Pb$

0+

41

4480.5

296.3

4125.3

- 3919.8

3708.4 < 100 PS

3475.1 4 PS

3197.7 294 PS

2614.5 16.7 PS

0.0

821.2

1093.9 🛉

3197.7

2614.5

²⁰⁸Pb₁₂₆

MC-study results

assuming the energy resolution is FWHM = 1%.

the realistic backgrounds from the 2v2ß decay of ¹⁰⁰Mo and ¹¹⁶Cd.

internal pollutions by 208 Tl and 214 Bi (both with 0.1mBq/kg).

□ The estimated sensitivity for 0vDBD experiment with 100 kg · year's running is on the level of $\lim_{1/2}^{0v\beta\beta} > 0.91 \times 10^{25} \text{ yr} ({}^{100}Mo)$ and $\lim_{1/2}^{0v\beta\beta} > 0.93 \times 10^{24} \text{ yr} ({}^{116}Cd)$ at 90% C.L. $\lim_{1/2}^{0v\beta\beta} > 1.1 \times 10^{24} \text{ yr} ({}^{100}Mo)$ and $\lim_{1/2}^{0v\beta\beta} > 1.7 \times 10^{23} \text{ yr} ({}^{116}Cd)$

□ It indicates that $CdMoO_4$ scintillator with $^{100}_{42}Mo$, $^{116}_{48}Cd$ of double target nuclides is a very attractive one in this field.

伊鲁玉山

Low temperature test platform (Laser)

Refrigeration

- Temperature: 22K 300K
- Laser: 355 nm
- PMT: Hamamatsu R928

Temperature dependence of light yield

The $CdMoO_4$ crystal excited with laser of 355nm exhibits a broad emission bands peaked at 551nm.

At room temperature, $CdMoO_4$ emits very faint light. With decreasing temperature, the light yield reaches a maximum at ~150 K. Further temperature decrease causes a reduction of the emission intensity.

Temperature dependence of decay time

Low temperature test platform (Radioactive source) Schematic

伊青玉融

Low temperature test platform (Radioactive source)

4

BGO crystal at 150 K

41

專

¥

LÉ.

Summary

 $\square MC\text{-study shows that } CdMoO_4 \text{ crystal is able to offer the interesting}$ information of 0vDBD both of ${}^{100}_{42}Mo$, ${}^{116}_{48}Cd$ nuclides. lim $T^{0v\beta\beta}_{1/2} > 0.91 \times 10^{25} \text{ yr} ({}^{100}Mo) \text{ and } \lim T^{0v\beta\beta}_{1/2} > 0.93 \times 10^{24} \text{ yr} ({}^{116}Cd)$

- \square Experimental testing data demonstrates the scintillating properties of $CdMoO_4$ crystal relying on different temperature.
- Characteristics of BGO crystal responding to α-source (²⁴¹₉₅Am, 5.5 MeV) and γ-source (¹³⁷₅₅Cs, 0.662MeV) is given.
 Next to do

Measure the $CdMoO_4$ scintillation properties using α -source ($^{241}_{95}Am$, 5.5 MeV) and γ -source ($^{137}_{55}Cs$, 0.662MeV) based on the low temperature test system.

Thank you

Back up

¹⁰⁰Mo ¹¹⁶Cd

FWHM=1%

任妻圣庭

理音主副

²¹⁴Bi

41

23

²¹⁴Bi $(Q_{\beta} = 3.27 MeV, T_{1/2} = 20 min) \rightarrow {}^{214}Po(Q_{\alpha} = 7.83 MeV, T_{1/2} = 169 \mu s)$

Peaks: ${}^{210}Pb (147keV) \xrightarrow{\beta \ decay(Q=63.5keV)} {}^{210}Bi(147keV, T_{1/2} = 5.012D)$

 $\begin{array}{c} ^{214}_{83}Bi \rightarrow ^{214}_{84}Po(1729.6) \rightarrow ^{214}_{84}Po(609.3) \rightarrow ^{214}_{84}Po(0) \rightarrow ^{210}_{82}Pb \rightarrow ^{210}_{83}Bi(46.5) \rightarrow ^{210}_{83}Bi(0) \rightarrow ^{210}_{84}Po \rightarrow ^{206}_{82}Pb \\ \beta \ decay \ Q = 1162 keV \qquad \alpha \ decay, Q = 5407 keV, T_{1/2} = 138D \end{array}$

prob>=0.9, N=62.057

- 伊鲁文副
- $T_{1/2} = 0.93 \times 10^{24} yrs$

$$T_{1/2} = 1.7 \times 10^{23} yrs$$

¹⁰⁰*Mo* Half-life Limit

Am-241

27

Cs-137

Properties of $^{100}_{42}Mo$ and $^{116}_{48}Cd$

Parent Isotope	Isotopic Abundance (%)	Q value (keV)	$T_{1/2}^{2v\beta\beta}$ (years)	$T_{1/2}^{0vetaeta}$ (years)
¹⁰⁰ ₄₂ Mo	9.82	3034	$(7.1 \pm 0.4) \times 10^{18}$	$> 1.1 \times 10^{24}$
¹¹⁶ ₄₈ Cd	7.49	2813	$(2.9 \pm 0.2) \times 10^{19}$	$> 1.7 \times 10^{23}$

10⁵

10⁴

10²

10¹

600

[⁵⁰⁰ 400

and 100 and 10

0

100

200

300 Time [ms]

Counts

⁷⁶Ge

ierda

2200

すうふ BOLUX: The (far) Future BOLUX: The (far) Future pure Ge wafer bolometer A STRAIGHTFORWARD GAIN IN BACKGROUND: light detector ISOTOPES WITH HIGHER Q-value $CdWO_4$ bolometer T=10 mK scintillating crystal 116Cd ¹³⁰Te T=10 mK above 2.6 MeV the γ rate ¹⁰⁰Mo is 1-2 order of magnitude lower CUORE BUT there is α background potentially dangerous 2600 3000 Ge thermistor Energy [keV] Ge thermistor reads-out ligh signal Environmental underground background: reads-out thermal signal ²³⁸U and ²³²Th trace contaminations BOLUX: The (far) Future Heat 0.2% FWHM @ 2615 keV Scintillation 2.9 % FWHM @ 2615 keV 220 -²³²Th + ⁵⁶Co Calibration 180 -2615 keV γ-ray 140 🗄 Counts Heat Signal in CdWO4 Heat – Light Signal 100 Scintillation 60 = 20 ^Ξ 7..... 600 1000 1400 1800 2200 2600 Energy [keV] 400 500

2.9% FWHM is the best result ever achieved with CdWO4 as scintillator

30

(1

¥

BOLUX: The (far) Future

BOLUX: The (far) Future

 $\frac{\beta/\gamma}{\alpha} \text{ and } \frac{\alpha}{\alpha} \text{ are clearly separated}$

Particle Discrimination Capability

任專

¥

É

