

Dark Matter Search at ATLAS di-jet with b-tagging and mono-V

周宁 (THU)

第十二届全国粒子物理学术会议・合肥 2016年8月

Searching for WIMP @LHC

and the second state of the second second

Collider searches

- DM production from collisions: independent searches
- Sensitive to small mass WIMPs
- May reveal the nature of WIMPs
- LHC @ CERN
 - 7/8 TeV, with 5/20 fb⁻¹
 - 13 TeV in 2015, with 2.3-3.2fb⁻¹
 - 13 TeV in 2016, data-taking

CMS

Sec. 1

ATLAS

DM: From EFT to Simplified Model

- Keep the mediator information
 - Mass, spin, coupling, width, etc

 \bar{q}

- Simplified model:
 - Starting point to build complete theories
 - Colliders can search for the mediator directly
 - Benchmark model @ Run II

LHC DM forum

arXiv:1507.00966

• DM production mechanism: Mediator Search

Di-jet resonance with b-tagging

- Search for mediator itself
 - Many BSM predicts mediator connecting SM and DM
 - The mediator may couple to heavy quarks
- Signature
 - two jet resonance with one or both b-tagged

- Main Updates at Run II
 - Di-bjet resoannce search in High mass region (above 1.1TeV) with 2015 data.
 - Analysis divided into inclusive one b-tag (>=1 b-tag) and 2 b-tag categories
 - Moriond paper in Phys. Lett. B. (with 3.2 fb-1 of 2015 data)
 - Di-bjet resonance search in Low mass region (600 GeV- 1.1 TeV) with 2015 data
 - 2 b-tag category (using di-bjet trigger)
 - ATLAS-CONF-2016-031 note in LHCP (with 3.2 fb-1 of 2015 data)
 - Di-bjet resonance search in High mass region with 2015+2016 data (13.3 fb-1)
 - Inclusive one b-tag and 2 b-tag
 - ATLAS-CONF-2016-060 note in ICHEP (with 3.2 fb-1 of 2015 + 10.1fb-1 of 2016 data)

• Approval talk for Moriond (Contact Editor) and ICHEP analyses

B-tagging Performance

• B-jet tagging

efficiency

6.0 gd

0.6

0.5

0.4

0.3

0.2

0.1

- 85% fixed b-jet efficiency WP
- Use recommended tagger: MV2c10
- Tagging efficiency study
 - Using ttbar, b* and Z' samples

2016 MV2c10

2015 MV2c20

1500

- Efficiency drops at high pT
- Systematics studies

b-tag efficiencies

1000

500

Presentation at Flavor Tagging Plenary in ATLAS P&P week 2016 Presentation at ATLAS Flavour Tagging Workshop in Germany 2016

Data and Selection

- Data: 3.2 fb-1 (2015) + 10.5 fb-1 (2016)
- Event Selection

at m_{jj} = 1.1TeV Updated value: mjj > 1.38 TeV (fit function studies)

- Selection criteria
 - 1st jet pT > 430 GeV
 - 2nd jet pT > 60 GeV
 - |ŋ| < 2.4
 - |y*| < 0.6
 - b-tagging 85% OP
 - MV2c10 tagger

7

Signal Shape

Resonance in di-jet invariant mass

Per-event tagging efficiency as a function of reconstructed mass

8

Background Composition

- Background is dominated by mis-tagged light-jet
- Dijet mass spectrum is affected by the non-flat tagging efficiency

Background Estimation

Bump-Hunter:

- Background estimated from fitting the data spectrum directly
- Looking for the most significant deviation from the background

$$f(x) = p_1(1-x)^{p_2}(x)^{p_3+p_4\ln x+p_5(\ln x)^2},$$

$$x = m_{jj}/\sqrt{s}$$

The 3 parameter fit function is found to describe accurately the present amount of data.

Bump-Hunter Results

 No 3sigma excess, p-value with 10k pseudo-experiments: 0.44 and 0.6 for 1 b-tag and 2-btag categories respectively.

Systematics

- •
- Background modeling
 - Fit function : from alternate function
 - Fit parameter : obtained by fitting the nominal function to the 10K of pseudo experiments
- Signal modeling
 - Luminosity : 2.1%
 - JES/bJES/JER : Updated with ICHEP recommendation

Rec. mass (GeV)	JES (para1 / para2 / para3)	JER	bJES	b-tagging SF (b^*/Z')
1.25	0.7%~/~0.9%~/~0.4%	1.1%	2.9%	20% / 10%
3	0.6%~/~1.2%~/~0.4%	0.9%	0.7%	$50\% \ / \ 60\%$
5	0.5%~/~1.3%~/~1.8%	0.9%	0.3%	$50\% \ / \ 70\%$

- b-tagging
 - b* model : 20% to 50%
 - Z' model : 10% to 70%
- pdf uncertainty : 1%

Exclusion Limits

• DM produced in association with vector boson (hadronic decay)

Mono-V

• Invisible WIMP produced with visible W/Z

Ning Zhou

Jet substructure to reconstruct W/Z hadronic decay

- Run-I result published at PRL
- 2015 3.2fb-1 data result submitted to PLB
- 2016 data analysis is work-in-progress

Event Selection

٠

Lentons						
	0-Lepton	1-Lepton	2-Lepton			
Electron	0 "Loose" electrons, pT>7GeV, ∏ < 2.47, LooseTrackOnly iso, LooseLH	No additional "Loose" electrons	-			
Muons	0 "Loose" muons, pT > 7GeV, I] < 2.7, LooseTrackOnly iso, Loose	1 "Signal" muon pT> 25GeV and Medium No additional "Loose" muons	2 "Signal" muons pT > 25GeV, I] < 2.5 Loose			

Jets			
R = 0.	.2	pT> 10 GeV, Ŋ < 2.5	
Track jets		>= 2 track-jets ghost associated to the leading large-R jet	
R= 0. Small-R	.4 . jets	Central: pT >20 GeV, Ŋ < 2.5 Forward: pT> 20GeV, 2.5< Ŋ < 4.5 JVT > 0.59 for jets!= pT < 60GeV, Ŋ < 2.4	
R= 1. Large-R	.0 Ljets	Anti-Kt R = 1.0 Large-R jet (trimmed with R_{sub} = 0.2, f_{cut} = 0.05) pT > 200 GeV $ I] $ < 2.0	
Boson Ta	gging	WZ-tagger: medium WP D2(pT) cut ~<1 M(jet) ~m(W/Z) +- 15GeV	

W Tagger

- Jet substructure
- Anti-kT 1.0 jet Trimming
 - fcut=5%
 - R_subjet = 0.2

• pT dependent cuts on jet mass and D2 variable (energy correlation ratio)

Signal and Background

- 0-lepton control region
 - No W-tagger
- Goal: paper with the full 2016 data

Summary

- Collider search may tell us about the nature of WIMP
 - Trying to cover every possibility
- Mediator search: dijet with b-tagging
- WIMP production: mono-W
- Stay tuned!

Backup

di-bjet Fit function Study (I)

- Lower bound of the fit range at 1.1 TeV is not sufficient to describe background shape of 1 b-tagged sample
- Scan lower bound from 1.1 to 1.5 TeV

di-bjet Fit function Study (II)

- Trigger-efficient dijet mass point is 1.1 TeV
- Lower bound of fit at 1.1 TeV is not sufficient to describe the background shape of 1 b-tagged sample
- Scan lower bound from 1.1 to 1.5 TeV
- Starting at 1.38 TeV is sufficient

