Collider Dark Matter Searches

FRANCESCA C. UNGARO (The University of Melbourne) on behalf of the ATLAS and CMS collaborations

International Symposium on Higgs boson and BSM physics, Weihai, China, 15-19 August 2016

Evidence for Dark Matter

Galactic Rotation Curves

Gravitational Lensing

Bullet Clusters

Radiation Cosmic Background

....and much more

Dark Matter Hunting

Three complementary approaches to dark matter detection

Detection at colliders possible if dark matter consist of a WIMP sector (very) weakly coupled to Standard Model

→ Consistent with experimental evidence

Dark Matter as a thermal relic of the early universe

The LHC

The Large Hadron Collider (LHC) accelerates and collides protons and heavy ions

- Operated between 2010 and 2012 at a centre-of-mass energy of the proton-proton collisions (√s) of 7 and 8 TeV → Run-I, ~5+20 fb⁻¹ of data collected
- Since 2015 operating at √s=13 TeV → Run-II, ~20 fb⁻¹ of data collected so far collecting data right now!
- Collisions take place where experiments are located

The ATLAS and CMS experiments

The ATLAS and CMS experiments are composed of different sub-systems

Particles resulting from the proton-proton collisions are identified by combining information from the sub-systems

Particles not interacting with the detector material: Missing transverse energy

Exploit conservation of momentum in the transverse plane

$$\begin{split} E_{x(y)}^{miss} &= -\sum_i E_{x(y)}^i \\ E_T^{miss} &= \sqrt{(E_x^{miss})^2 + (E_y^{miss})^2} \end{split}$$

Dark Matter Production

Interpretation of the Results

- Effective field theory (EFT) models used for interpreting the results during Run-1
 - Valid if transferred momentum much smaller than mediator mass
 - Assumption breaks at the LHC
- Use mainly **simplified models** to interpret the results in **Run-2**
- Joint theory-experiment LHC Dark matter forum to
 - discuss and agree on benchmark signal models
 - Agree on how to **present the results**
 - <u>arXiv:1507.00966</u>

In this talk only Run-2 dark matter searches discussed in this talk, but every search for R-conserving SUSY is de facto a search for dark matter candidates!

Mono-X Signatures

ATLAS mono-jet search

Select initial state radiation (ISR) jet recoiling against DM candidates

- Axial-vector mediator coupling to quarks and DM
- Most powerful search at hadron colliders
- Select events with at least one jet and large E_T^{miss}

Main background: $Z \rightarrow vv + jets$

ATLAS mono-V (hadronic) search

Simplified model with vector mediator and EFT model $ZZ\chi\chi$

γ

(considering only jets with p_T lower than mediator mass for EFT models)

• Consider hadronic decays of W and Z bosons (larger BR)

Construct "large jets" starting from "small jets"
→ exploit sub-structure to distinguish W from Z

arXiv:1608.02372

γ

ATLAS mono-V (hadronic) search

arXiv:1608.02372

Simplified model with vector mediator and EFT model $ZZ\chi\chi$

- Simplified model: limit on signal strength in dark matter mediator mass plane
- EFT model: limit in dark matter mass EFT mass scale

CMS mono-jet and mono-V (hadronic) search

Spin-1 or spin-0 mediators coupling to quarks and DM

ISR jet or W/Z boson recoiling against DM candidates

• Hadronic decays of energetic W and Z bosons

Separate jets from **g** and jets from **W/Z** bosons

- R=0.4 VS R=0.8 anti-K_T jets
- Jet mass
- Jet substructure (subjetness)

Main backgrounds $Z \rightarrow vv$ and $W \rightarrow lv + jets$ normalised in γ +jets region

CMS-PAS-EXO-16-037

CMS mono-jet and mono-V (hadronic) search

ATLAS and CMS mono-Z(ll) search

Simplified model of dark matter production with vector mediator

- Z decaying into **electron** or **muon** pairs
- Select events with lepton pairs and large E_T^{miss}
- Main background: ZZ→vvll

ATLAS and CMS mono-Z(ll) search

Simplified model of dark matter production with vector mediator

ATLAS and CMS mono-y searches

Simplified models and EFT model $\gamma\gamma\chi\chi$

Clean signal but low cross section

- Select events with high p_T isolated γ and large E_T^{miss}
- Main background: $Z(\rightarrow vv) + \gamma$

CMS-PAS-EXO 16-039

Francesca Ungaro - Higgs Boson and BSM Physics, 15-19 August 2016

ATLAS and CMS mono-y searches

ATLAS and CMS mono-h search, h→bb

Dark matter coupling to **Higgs boson**, e.g. in Z' leptophobic models

- Higgs radiation suppressed
- Probe coupling of Higgs boson to mediator
- h→bb dominant decay mode
- Resolved or merged b-jets depending on E_T
- look for resonance m(bb) or m(B) ~m(h)

ATLAS and CMS mono-h searches, h->bb

ATLAS and CMS mono-h search, $h \rightarrow \gamma \gamma$

ATLAS and CMS mono-h search, $h \rightarrow \gamma \gamma$

Francesca Ungaro - Higgs Boson and BSM Physics, 15-19 August 2016

Associate Production

CMS search for DM plus heavy quarks

Search for **dark matter** produced in association with **top or bottom quarks**

- Favoured if couplings are Yukawa-like
- Scalar or pseudo-scalar mediators

Final state: **b-jets plus** E_T^{miss}

ATLAS search for DM plus b-quarks

Search for dark matter produced in association with bottom quarks

- Select events with b-jets plus E_T^{miss}
- Low jet multiplicity

ATLAS search for DM plus top pairs

Search for dark matter produced in association with top quarks

- Hadronic, semi-leptonic and di-leptonic decays
- Selections optimised separately

مووووووو

8 **0000000**

s=13 TeV, 13.3 fb'

350

400

450

m(φ) [GeV]

500

Scalar mediato

0 leptons

ATLAS Preliminary

Observed limit, g=3.5

Expected limit, g=3.5 (±1 σ,....)

200

ATLAS-CONF 2016-077

250

300

[^250 [06V] 200 [X] 200

150

100

Francesca Ungaro - Higgs Boson and BSM Physics, 15-19 August 2016

m_x [GeV]

imit on

200

180

160

140

120

100

808

60 40 20

0

CMS search for DM plus top pairs

Search for **dark matter** produced in association with **top quarks**

- Hadronic and semi-leptonic decays
- Background dominated by top pairs
- Use top tagger and optimise selections based on number of top tags and b-jets

CMS search for DM plus boosted tops

ATLAS h DM search, h→4l

Search for Mediators

ATLAS searches for mediators

CMS searches for mediators

CMS-PAS-EXO-16-032

CMS-PAS-EXO-16-030

Summary of Searches

Comparison with Direct Detection Searches

Conclusions

- Many searches for dark matter from the ATLAS and CMS experiments
 - Complementary to direct and indirect detection searches
- Looking for dark matter candidates through mono-X analyses and produced association
- Looking for mediators through resonances of di-jets
- No excess over the SM prediction observed, results interpreted in terms of exclusion limits in the context of simplified models and effective field theories

Back-Up

Truncation

In the case of the model of $\gamma\gamma\chi\bar{\chi}$ interactions, lower limits are placed on the effective mass scale M_* as a function of m_{χ} , as shown in Fig. 8. The EFT is not always valid, so a truncation procedure is applied [75]. In this procedure, the scale at which the EFT description becomes invalid (M_{cut}) is assumed to be related to M_* through $M_{cut} = g^*M_*$, where g^* is the EFT coupling. Events having a centre-of-mass energy larger than M_{cut} are removed and the limit is recomputed.

ATLAS: JHEP06 (2016) 059