SCRF System Studies for CEPC APDR and Booster

Zhenchao LIU 2016-8-18

Outline

- APDR SRF scheme
- Cavity requirement
- Phase and voltage analysis
- Booster

New idea: APDR

New SRF layout-6 ring

Phase

- The bunches in a bunch train will be accelerated at different Vc_i
- The bunches in a bunch train will be accelerated at different synchrotron phase to keep constant energy gain.
- $Va_i = Vc_i * cos \phi s_i = C$

parameter for CEPC partial double ring

(wangdou20160325)

	Pre-CDR	H-high lumi.	H-low power	W	Z
Number of IPs	2	2	2	2	2
Energy (GeV)	120	120	120	80	45.5
Circumference (km)	54	54	54	54	54
SR loss/turn (GeV)	3.1	2.96	2.96	0.59	0.062
Half crossing angle (mrad)	0	15	15	15	15
Piwinski angle	0	2.5	2.6	5	7.6
N_e /bunch (10 ¹¹)	3.79	2.85	2.67	0.74	0.46
Bunch number	50	67	44	400	1100
Beam current (mA)	16.6	16.9	10.5	26.2	45.4
SR power /beam (MW)	51.7	50	31.2	15.6	2.8
Bending radius (km)	6.1	6.2	6.2	6.1	6.1
Momentum compaction (10 ⁻⁵)	3.4	2.5	2.2	2.4	3.5
$\beta_{IP} x/y (m)$	0.8/0.0012	0.25/0.00136	0.268 /0.00124	0.1/0.001	0.1/0.001
Emittance x/y (nm)	6.12/0.018	2.45/0.0074	2.06 /0.0062	1.02/0.003	0.62/0.0028
Transverse σ_{IP} (um)	69.97/0.15	24.8/0.1	23.5/0.088	10.1/0.056	7.9/0.053
ξ_x/IP	0.118	0.03	0.032	0.008	0.006
$\xi_{\rm v}/{ m IP}$	0.083	0.11	0.11	0.074	0.073
$\dot{V}_{RF}(\text{GV})$	6.87	3.62	3.53	0.81	0.12
f_{RF} (MHz)	650	650	650	650	650
<i>Nature</i> σ_{z} (mm)	2.14	3.1	3.0	3.25	3.9
Total σ_{z} (mm)	2.65	4.1	4.0	3.35	4.0
HOM power/cavity (kw)	3.6	2.2	1.3	0.99	0.99
Energy spread (%)	0.13	0.13	0.13	0.09	0.05
Energy acceptance (%)	2	2	2		
Energy acceptance by RF (%)	6	2.2	2.1	1.7	1.1
n_{γ}	0.23	0.47	0.47	0.3	0.24
Life time due to	47	36	32		
beamstrahlung_cal (minute)					
<i>F</i> (hour glass)	0.68	0.82	0.81	0.92	0.95
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	2.96	2.01	3.09	3.09

6 double ring	Pre-CDR	PDR(HL)	APDR(HL	APDR (H-low		
	Zhaijiyuan20160327	Zhaijiyuan20160327&04 08	V _{RF} =3.62)	power)	APDR (Z)	
Number of IPs	2	2	2	2	2	
Energy (GeV)	120	120	120	120	45.5	
Circumference (km)	54	54	54	54	54	
SR loss/turn (GeV)	3.1	2.96	2.96	2.96	0.062	
Half crossing angle (mrad)	0	15	15	15	15	
Piwinski angle	0	2.5	2.5	2.6	8.5	
N_e /bunch (10 ¹¹)	3.79	2.85	2.85	2.67	0.46	
Bunch number	50	67	22x3	15x3	367x3	
Beam current (mA)	16.6	16.96	17	10.5	45.4	
SR power /beam (MW)	53.2	51	50	31.2	2.8	
Bending radius (km)	6.1	6.2	6.2	6.2	6.1	
$V_{RF}(\text{GV})$	6.87	3.65	3.62	5.16	0.357	
f_{RF} (MHz)	650	650	650	650	650	
Cavity No.	384	384	384	498	48	
Cavity gradient	15.8	20.6	20.6	22.6	16.2	
Accelerating phase	63.1	35.2	35.2-32.3	55.5-55	80.2-79.8	
CW power/cavity (kW)	275	263.4	260	126	117	
Peak power/train (kW)	/	2220	2345	1148	1237	
Total Power (MW)	105.6	382.5	100.4	62.7	5.6	
Cell/cavity	5	2	2	2	2	
Cavity/module	4	6	8	4(3)	4	
Module/station	6	10	8	21	2	
Total module	96	64	48	126	12	
R/Q (Ω)	514	206	206	206	206	
G	268	268	268	268	268	
HOM loss factor/cavity (V/pC)	1.8	0.54	0.54	0.54	0.54	
HOM power/cavity (kW)	3.6	0.8	0.838	0.485	0.361	
Working Temperature (K)	2	2	2	2	2	
QO	4E10	2E10	2E10	2E10	2E10	
τ (ms)	1.156	0.097	0.811	2.045	2.243	
QL	2.36e6	1.97e5	1.656e6	4.18e6	4.58e6	
Bandwidth(kHz)	0.28	3.3	0.196	0.077	0.071	
Detuning F (kHz)	-0.27	-1.16	-0.138	-0.111	-0.234	
Stored energy/cavity(J)	158.7	107.4	107.4	126.9	65.3	
Frev(kHz)	5.484	5.484	5.484	5.484	5.484	
Gap length (us)	/	0.3-160	26.7	26.7	26.7	
η(RF to beam efficiency)(%)	100	27%	~100	~100	~100	
Vc decrease(%)	/	/	3.3	1.3	2.5	
ΤΒ/τ	/	1.7	0.0158	0.013	0.012	

Field decrease vs. various initial field gradient of the cavity

New SRF layout-8 ring

8 double ring	Pre-CDR Zhaijiyuan20 160327	PDR(HL) Zhaijiyuan20160 327&0408	<u>АРDR(HL</u> V _{RF} =3.62)	APDR (H-low power V _{RF} =3.53)	APDR (H- low power)	APDR (Z)
Number of IPs	2	2	2	2	2	2
Energy (GeV)	120	120	120	120	120	45.5
Circumference (km)	54	54	54	54	54	54
SR loss/turn (GeV)	3.1	2.96	2.96	2.96	2.96	0.062
Half crossing angle (mrad)	0	15	15	15	15	15
Piwinski angle	0	2.5	2.5	2.6	2.6	8.5
N_e /bunch (10 ¹¹)	3.79	2.85	2.85	2.67	2.67	0.46
Bunch number	50	67	17x4	11x4	11x4	275x4
Beam current (mA)	16.6	16.96	17	10.5	10.5	45.4
SR power /beam (MW)	53.2	51	50	31.2	31.2	2.8
Bending radius (km)	6.1	6.2	6.2	6.2	6.2	6.1
$V_{RF}(\text{GV})$	6.87	3.65	3.62	3.53	5.16	0.357/0.12/0.12
f_{RF} (MHz)	650	650	650	650	650	650
Cavity No.	384	384	384	384/768/192	498	48/16/16
Cavity gradient	15.8	20.6	20.6	20/20/20	22.6	16.2/16.3/32.6
	63.1	35.2	35.2-33	33-31.6/33-	55.3-55	80.1-79.9/58.9-
Accelerating phase				31.6/33-31.6		56.9/58.9-58
CW power/cavity (kW)	275	263.4	260	163.3/81.6/326.6	126	117/350/350
Peak power/train (kW)	/	2220	1389	843	843	884
Total Power (MW)	105.6	382.5	100.4	62.7	62.7	5.6
Cell/cavity	5	2	2	2/1/4	2	2/2/1
Cavity/module	4	6	6	6/12/3	6(3,2)	6/2/2
Module/station	6	10	8	8/8/8	10(11)	1/1/1
Total module	96	64	64	64/64/64	126	8/8/8
R/Q (Ω)	514	206	206	206/103/412	206	206/206/103
G	268	268	268	268	268	268
HOM loss factor/cavity (V/pC)	1.8	0.54	0.54	0.54/0.27/1.08	0.54	0.54/0.54/0.27
HOM power/cavity (kW)	3.6	0.8	0.838	0.485/0.24/0.97	0.485	0.36/0.36/0.18
Working Temperature (K)	2	2	2	2	2	2
Q0	4E10	2E10	2E10	2E10	2E10	2E10
τ (ms)	1.156	0.097	0.811	1.242	2.045	2.243/0.76/0.76
QL	2.36e6	1.97e5	1.656e6	2.53e6	4.18e6	4.58e6/1.55e6/1.55e6
Bandwidth(kHz)	0.28	3.3	0.196	0.128	0.077	0.071/0.209/0.209
Detuning F (kHz)	-0.27	-1.16	-0.138	-0.083	-0.111	-0.234/-0.347/-0.347
Stored energy/cavity(J)	158.7	107.4	107.4	100	126.9	65.3/65.3/133
Frev(kHz)	5.484	5.484	5.484	5.484	5.484	5.484
Gap length TB (us)		0.3-160	20	20	20	20
η(RF to beam efficiency)(%)	100	27%	~100	~100	~100	~100
Vc decrease(%)		/	2.5	1.6	1	1.7/5.3/2.5
TB/T	/	17	0.025	0.0098	0.0098	0.0089/0.0263/0.0263

What is the best number of PDR?

- P_{cw}<<P_{pulse} case:
- There are 2n PDR in the circumference (n=1,2...).
- Assume the voltage decrease in the 2 PDR design is a.
- The voltage decrease in the 2n PDR design is a/n.

What is the best voltage?

• R/Q=Vc^2/ ω U, assume P_{pulse}>>P_{cw}

$$\frac{V_{\rm c}'}{V_{\rm c}} = \sqrt{1 - \frac{(V_{SR}/dN_{cav})q\omega(R/Q)N_b}{(V_{RF}/N_{cav})^2}}$$

- d, cavity effective length, q bunch charge, N_b bunches per train, N_{cav} cavity number.
- H-low power case:
 - q=42.8nC,Vsr=2.96GV, N_{cav} =384
- Assume matching

What is the best voltage?

• R/Q=Vc^2/ ω U, assume P_{pulse}>>P_{cw}

$$\frac{V_{c}'}{V_{c}} = \sqrt{1 - \frac{(V_{SR}/dN_{cav})q\omega(R/Q)N_{b}}{(V_{RF}/N_{cav})^{2}}}$$

- d, cavity effective length, q bunch charge, N_b bunches per train, N_{cav} cavity number.
- H-low power case:
 - Nb=11,q=42.8nC,Vsr=2.96GV,
- Assume matching & same gradient

LEP

After the passage of the first bunch (bunch a) the voltage left in an RF unit located before an intersection point is given by:

$$V_{\rm left} = \sqrt{(V_0 \cos \varphi_e)^2 - 2\pi I_b V_0 h R_s Q^{-1} \cos \varphi_e \sin(\varphi_s + \varphi_{align})}$$

- Assume:
 - ϕ_e = 1deg., ϕ_s =116deg., ϕ_{align} =3deg., I_b =0.45mA, h=31324, Q=40000, R_s=774M\Omega (14 cavities)
 - V₀ (initial peak voltage) from 20MV-100MV
 - 2.3MV/cavity(acc. voltage)

Voltage decrease: 1 bunch ~1% 4 bunches ~4%

APDR: 8 DR: 2.5%(HL)5.3/2.5%(Z) 6 DR: 3.3%(HL)

Voltage drop is acceptable!

CEPC APDR SRF Design

APDR SRF Challenge	Difficulty	Methods	CDR
Phase stability	***	Feedback control, injection control, phase stability, SR damping,	±0.1%
Voltage control	***	Feedback control,	±1%
BBU	**	Variation on bunch current, Low wake field excitation at bunch train length, High damping SC cavity, Radiation damping(wiggler), bunch spacing, feedback,	>500mA (Z>1A)
HOM damping	**	Single cell beam pipe/slotted cavity(multi-cell),	1-3kW
Longitudinal instability	**		
Transverse instability	**		
Impact bunch position control	***		
Input coupler	**		130kW(1cell),260kW(2cell); Z:350kW(2cell),175kW(1cell)
Q ₀	**	EP is very important	2E10
Cavity gradient	***	20.6MV/m&Q₀=2E10@2K (☆☆) 32.6MV/m&Q₀=2E10@2K (☆☆☆, lower the Q₀)	H mode:2E10 Z mode:> 5E9

Cavity requirement

What is the best β ?

P-, reflection power; P+, forward power.

What is the best cavity for APDR?

- $R/Q=Vc^2/\omega U$
- A lower R/Q can give a high U at the same cavity voltage (or gradient)
- The gradient is more stable at higher U when the input power is not enough at the pulse period.
- It is an opposite design scheme comparing with low-loss cavity or others
- Reduced R/Q can also decrease the detuning frequency
- R/Q ↓ Riris ↑ loss factor ↓
- Cavity can work at a lower gradient with the same U

Phase and voltage analysis

Power coupling

Phasor diagram

Optimum coupling

• With optimum coupling condition

Equispaced bunches

• For equispaced bunches:

$$\widetilde{\mathbf{V}}_{\mathrm{b}} \approx -\frac{\mathbf{I}_{0}R_{a}}{1+\beta}\cos\psi e^{i\psi}$$

 Consider H-Low power case, I₀=0.021mA,R_a=206x2x10¹⁰, beta=7.9x10³, ψ=-33deg.=-0.576

 $V_{b} = 0.021 \times 206 \times 2 \times 10^{10} \times \cos(-0.576) e^{-0.576i} / (1+7.9 \times 10^{3}) = -7.7 \times 10^{6} + 5 \times 10^{6} i$

• The amplitude of V_{b} is 9.2MV

Abs (V_b) =9.2MV Angle (V_b) =-0.576

• $V_c = 20MV/m*0.46m = 9.2MV, \phi_s = 0.576$

So, $V_b = V_c \& \psi = -\varphi_s$

APDR bunches

- Bunch train case, Tb is the bunch time interval in bunch train;
 TB is the time interval between bunch trains.
- T_b≠T_B.
- Tb<<TB&TB/td<<1
- Tb/td=2.428e-4, TB/td=0.016, φs=33deg., f=650MHz

What is beam loading?

- It is not a beam in the cavity!!!
- It is the beam induced voltage in the cavity!!!
- When TB/Td<<1, the multi-bunches induced a constant V_b

$$V_{i} = V_{i,h} \left(1 + e^{-\rho} e^{i\varphi} + e^{-2\rho} e^{i2\varphi} + \cdots \right)$$

$$\rho = \frac{t_{\rm b}}{t_{\rm d}} \qquad \qquad \varphi = \omega_h t_{\rm b} - 2\pi m_{\rm b}$$

$$V_{\rm i} = V_{{\rm i},h} \frac{1}{1 - {\rm e}^{-
ho} {\rm e}^{{\rm i} \varphi}}, \qquad V_{\rm b} = V_{{\rm i},h} \left(\frac{1}{1 - {\rm e}^{-
ho} {\rm e}^{{\rm i} \varphi}} - \frac{1}{2} \right)$$

Non-equispaced bunches

 Consider H-Low power case, it is equal to 11x4bunches, I₀=0.021mA/11=1.91x10⁻³mA, R_a=206x2x10¹⁰, beta=7.9x10³, ψ=-33deg.=-0.576, f=650MHz, t'_b=196x77/f=2.322x10⁻⁵s, Q₀=2x10¹⁰

$$V_{ih} = R_h I_0 t_b \frac{\omega_h}{2Q_0} = 1.865 \times 10^4 V$$

 Phase shift is 1.4deg. with 11 bunches, the phase shift between two bunches is 0.14deg. m_b=196. So t_b=195.999611/f=3.015x10⁻⁷s.

$$\varphi = \omega_h t_b - 2\pi m_b = -2.444 \times 10^{-3}$$

 Also we need to assume there is no phase shift between the first bunch of each bunch train.
 0.14deg.

One circle=308t_b

- $V_{br}=V_{ih}*A$, A for bunches in a bunch train after 400000 circles.
- Total phase shift of V_b is 1.37degree for 11 bunches.

Vg

8-ring: Bunch No.	Re Vb	Im Vb	Re Vc	Im Vc	Re Vg	Im Vg	ABS Vg	Vg	Vg Angle (deg.)	Vg Angle shift (deg.)
1	-7.67E+06	4.98E+06	7.72E+06	5.01E+06	1.54E+07	3.05E+04	1.539E+07	1.0000	0.00	0
2	-7.66E+06	5.00E+06	7.72E+06	4.99E+06	1.54E+07	-6.31E+03	1.537E+07	0. 9991	-0.13	0
3	-7.64E+06	5.02E+06	7.72E+06	4.97E+06	1.54E+07	-4.31E+04	1.536E+07	0. 9983	-0.27	0
4	-7.63E+06	5.03E+06	7.72E+06	4.95E+06	1.53E+07	-7.98E+04	1.535E+07	0.9974	-0.41	0
5	-7.62E+06	5.05E+06	7.72E+06	4.94E+06	1.53E+07	-1.16E+05	1.533E+07	0. 9966	-0.54	0
6	-7.60E+06	5.07E+06	7.72E+06	4.92E+06	1.53E+07	-1.53E+05	1.532E+07	0. 9958	-0.68	0
7	-7.59E+06	5.09E+06	7.72E+06	4.90E+06	1.53E+07	-1.89E+05	1.531E+07	0. 9949	-0.82	0
8	-7.58E+06	5.10E+06	7.72E+06	4.88E+06	1.53E+07	-2.26E+05	1.530E+07	0.9941	-0.96	0
9	-7.56E+06	5.12E+06	7.72E+06	4.86E+06	1.53E+07	-2.62E+05	1.528E+07	0. 9933	-1.09	0
10	-7.55E+06	5.14E+06	7.72E+06	4.84E+06	1.53E+07	-2.98E+05	1.527E+07	0.9924	-1.23	0
11	-7.54E+06	5.16E+06	7.72E+06	4.82E+06	1.53E+07	-3.34E+05	1.526E+07	0. 9916	-1.37	0

Phase evolution

• With optimum coupling condition (H low power 8ring)

Bunch No.	Pre CDR (CW, P _g =P _{avg})		PDR(P _g =P _{pul} RF effi	CW, _{se} , very low ciency)	APDR 8 ring (HL, CW, P _g =P _{avg})		APDR 8 ring (H- low power, CW, P _g =P _{avg})		APDR 8 ring (Z, P _g =P _{avg})	
	Vc	Phase shift	Vc	Phase shift	Vc	Phase shift	Vc	Phase shift	Vc	Phase shift
1	1	0	1	0	1	2.00	1	1.40	1	2.0000
2	1	0	1	0	0.9984	1.88	0.9984	1.26	0.9998	1.9927
3	1	0	1	0	0.9969	1.75	0.9968	1.12	0.9996	1.9855
4	1	0	1	0	0.9953	1.63	0.9952	0.98	0.9994	1.9782
5	1	0	1	0	0.9938	1.50	0.9936	0.84	0.9992	1.9709
6	1	0	1	0	0.9922	1.38	0.992	0.70	0. 9990	1.9636
7	1	0	1	0	0.9906	1.25	0.9904	0.56	0.9988	1.9564
8	1	0	1	0	0. 9891	1.13	0.9888	0.42	0. 9987	1.9491
9	1	0	1	0	0. 9875	1.00	0.9872	0.28	0.9985	1.9418
10	1	0	1	0	0. 9859	0.88	0.9856	0.14	0.9983	1.9345
11	1	0	1	0	0.9844	0.75	0.984	0	0.9981	1.9273
15	1	0	1	0	0.9781	0.25			0.9973	1.8982
17	1	0	1	0	0.9750	0			0.9969	1.8836
50	1	0	1	0					0.9906	1.6436
67			1	0					0.9873	1.5200
275									0.0947	0

Assume $V_{\rm rf}$ is constant at the first bunch of bunch trains and the change of $V_{\rm b}$ is negligible.

Bunch No.	ch Pre CDR (CW, P _g =P _{avg})		PDR (0 P _g =P _{pul} RF effic	PDR (CW, P _g =P _{pulse} , very low RF efficiency)		APDR 6 ring (H- low power, CW, P _g =P _{avg})		APDR 6 ring (HL, CW, P _g =P _{avg})		APDR 6 ring (Z, P _g =P _{avg})	
	Vc	Phase shift	Vc	Phase shift	Vc	Phase shift	Vc	Phase shift	Vc	Phase shift	
1	1	0	1	0	1	2.20	1	2.60	1	2.6000	
2	1	0	1	0	0.9984	2.04	0.9984	2.48	0. 9998	2.5929	
3	1	0	1	0	0.9968	1.89	0.9969	2.35	0. 9996	2.5858	
4	1	0	1	0	0. 9952	1.73	0.9953	2.23	0. 9994	2.5787	
5	1	0	1	0	0. 9936	1.57	0.9937	2.10	0.9992	2.5716	
6	1	0	1	0	0.992	1.41	0.9921	1.98	0. 9989	2.5645	
7	1	0	1	0	0.9904	1.26	0.9906	1.86	0. 9987	2.5574	
8	1	0	1	0	0. 9888	1.10	0.9890	1.73	0. 9985	2.5503	
9	1	0	1	0	0.9872	0.94	0.9874	1.61	0. 9983	2.5432	
10	1	0	1	0	0. 9856	0.79	0.9859	1.49	0. 9981	2.5361	
11	1	0	1	0	0.984	0.63	0.9843	1.36	0. 9979	2.5290	
15	1	0	1	0	0.9776	0	0.9780	0.87	0.9971	2.5005	
22	1	0	1	0			0.9670	0	0. 9956	2.4508	
50	1	0	1	0					0. 9897	2.2519	
67			1	0					0.9861	2.1311	
367									0.0923	0	

Assume $V_{\rm rf}$ is constant at the first bunch of bunch trains and the change of $V_{\rm b}$ is negligible.

Bunch position

- The e+ and e- bunch trains should be symmetry to the two IPs.
- The phase shift of the synchrotron phase between each bunch in a bunch train is 0.14 degree for the H low power mode. The total phase shift is 1.4 degree.
- After enough synchrotron damping, the bunches will be at its synchrotron phase separately.
- If the transport matrix from cavity to IP is the same for e+ and e- bunch trains, there will be no shift for the position of

colliding.

Power reflection

• In resonant operation:

$$P_r = P_g - P_c - P_b$$

• For heavy beam loading, $P_c << P_b$,

$$P_r \approx P_g - P_b$$

- For APDR steady state, P_b is constant. We make the first bunch of bunch train at optimal coupling, then P_g=P_b. P_r=0
- The generator power is

$$P_{\rm g} = \frac{R_{\rm a} i_{\rm g}^2}{16\beta} = \frac{P_{\rm c}}{4\beta} \left[(1+\beta) + \frac{I_0 R_{\rm a} \cos \phi_{\rm s}}{V_{\rm c}} \right]^2$$

• Which simplifies to

$$P_{\rm g} = \frac{\left[(1+\beta)P_{\rm c} + P_{\rm b}\right]^2}{4\beta P_{\rm c}}$$

The first bunch of bunch train working at different synchrotron phase

• The beam induced voltage and generator induced voltage are related with β.

$$\begin{split} \tilde{V}_{\rm br} &= \frac{\tilde{i}_{\rm b}}{(1+\beta)G_{\rm c}} = -\frac{I_0R_{\rm a}}{1+\beta},\\ \tilde{V}_{\rm gr} &= \frac{\tilde{i}_{\rm g}}{(1+\beta)G_{\rm c}} = \frac{2\sqrt{R_{\rm a}}P_{\rm g}\beta}{1+\beta} \end{split}$$

$$\tilde{V}_{\rm c}=\tilde{V}_{\rm gr}+\tilde{V}_{\rm br}$$

- Vc can be increased by lower β.
- By increasing Vc and φs, keeping Vc*cos (φs)=C, →Pb is constant, Pg is constant. So

$$P_r \approx P_g - P_b = 0$$

Bunches in a bunch train

 In we set the β optimal to the first bunch, then the β is not optimal to others.

$$P_{\rm g} = \frac{\left[(1+\beta)P_{\rm c} + P_{\rm b}\right]^2}{4\beta P_{\rm c}}$$

 For example, H low power case, If we set β=7914 for the first bunch, keeping P_b constant (161.5kW).
 Pc=20.42W→Eacc=20MV/m. The last bunch, Pc=19.8W

The Pg needed for the last bunches is a little higher. But only 0.025%

Booster Parameters

• Parameter List for Alternating Magnetic Field Scheme.

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	6	RF voltage [Vrf]	GV	0.2138
Circumference [C]	km	63.84	RF frequency [frf]	GHz	1.3
Revolutionfrequency[f ₀]	kHz	4.69	Harmonic number [h]		276831
SR power / beam [P]	MW	2.16	Synchrotronoscillationtune[n _s]		0.21
Beam off-set in bend	cm	1.2	Energy acceptance RF	%	5.93
Momentum compaction factor[α]		2.33E-5	SR loss / turn [U0]	GeV	5.42E-4
Strength of dipole	Gs	-129.18/+180.84	Energyspread[s _d] inequilibrium	%	0.0147
n _B /beam		50	injected from linac	%	0.1
Lorentz factor [g]		11741.71	Bunch length[s] inequilibrium	mm	0.18
Magnetic rigidity [Br]	T∙m	20	injected from linac	mm	~1.5
Beam current / beam [I]	mA	0.92			
Bunchpopulation[N _e]		2.44E10	Transversedampingtime[t _x]	ms	4.71
Bunch charge [Q _b]	nC	3.91681		turns	
emittance-horizontal[e _x] inequilibrium	m∙rad	6.38E-11	Longitudinaldampingtime[t _e]	ms	4.71
injected from linac	m∙rad	3E-7		turns	
emittance-vertical[e _y] inequilibrium	m∙rad	0.191E-11			
injected from linac	m∙rad	3E-7			

Tianjian Bian

Booster Parameters

• Parameter List for Alternating Magnetic Field Scheme.

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	120	RF voltage [Vrf]	GV	6
Circumference [C]	km	63.84	RF frequency [frf]	GHz	1.3
Revolutionfrequency[f ₀]	kHz	4.69	Harmonic number [h]		276831
SR power / beam [P]	MW	2.16	Synchrotronoscillationtune[n _s]		0.21
Beam off-set in bend	cm	0	Energy acceptance RF	%	4.57
Momentum compaction factor[α]		2.54E-5	SR loss / turn [U0]	GeV	2.34
Strength of dipole	Gs	516.71	Energyspread[s _d] inequilibrium	%	0.12
n _B /beam		50	injected from linac	%	0.1
Lorentz factor [g]		234834.15	Bunch length[s _d] inequilibrium	mm	1.36
Magnetic rigidity [Br]	T∙m	400	injected from linac	mm	~1 5
Beam current / beam [I]	mA	0.92			1.5
Bunchpopulation[N _e]		2.44E10	Transversedampingtime[t _x]	ms	21.76
Bunch charge [Q _b]	nC	3.91681			
emittance-horizontal[e _x] inequilibrium	m∙rad	3.61E-9	Longitudinaldampingtime[t _e]	ms	
injected from linac	m∙rad	3E-7			
emittance-vertical[e _y] inequilibrium	m∙rad	0.1083E-9			
injected from linac	m∙rad	3E-7			

Tianjian Bian

Conclusion

- The 8-double ring and 6-double ring are available when using the same parameter as PDR(V_{RF}=3.62GV) for HL. The 8-double ring has a lower phase variation than the 6-double ring.
- The phase region is from 35.2-33 degree for bunches in a bunch train for the 8-double ring HL mode. The phase region is from 35.2-32.3 degree for the 6-double ring HL mode.
- The bunch energy gain in each cavity is constant.
- The RF to beam efficiency is ~100%.
- V_b is 9.14MV with a 1.37deg. phase shift in a bunch train of the APDR H low power of 8 ring case.
- V_{b} reaches constant value after about 65 circles (I_{b} =C, ~0.012s).
- Beam can be stored by increasing bunch charges stably (with reflection in low current).
- V_c should keep constant phase and value for each bunch separately.

Thanks!