Higgs Physics at FCC 100 TeV Collider

Weiming Yao (IHEP/LBNL) for FCC Physics Study Group

International Symposium on Higgs Boson and Beyond Standard Model Physics at Shandong University, Weihai, August. 15-19, 2016

Future projects

E_{LHC} *E_{FCC}) **Tevatron**

The FCC-hh Collider at 100 TeV

Parameter	FCC-hh	LHC
Energy [TeV]	100 c.m.	14 c.m.
Dipole field [T]	16	8.33
#IP	2 main, +2	4
Luminosity/IP _{main} [cm ⁻² s ⁻¹]	5 - 25 x 10 ³⁴	1 x 10 ³⁴
Stored energy/beam [GJ]	8.4	0.39
Synchrotron rad. [W/m/aperture]	28.4	0.17
Bunch spacing [ns]	25 (5)	25

LHC

- Phase 1 (baseline): 5 x 10³⁴ cm⁻²s⁻¹ (peak),
 250 fb⁻¹/year (averaged)
 2500 fb⁻¹ within 10 years (~HL LHC total luminosity)
- Phase 2 (ultimate): ~2.5 x 10³⁵ cm⁻²s⁻¹ (peak), 1000 fb⁻¹/year (averaged)
 → 15,000 fb⁻¹ within 15 years
- Yielding total luminosity O(20,000) fb⁻¹ over ~25 years of operation

FCC

Outline

- •Physics case for a 100 TeV collider
- Precision Higgs physics including exotic & rare decays
- •Discovery of extended Higgs Sectors
- Double-Higgs production
- Conclusion

Disclaim:

- •Talk is based on FCC document on "Higgs and EWSB studies"
- •Studies contributed by many people
- •Some of slides are borrowed from Mangano's ICHEP 2016 talk

Higgs and EWSB Studies at 100TeV

 Not conclusive result, rather starting point for study of FCC physics.

 Providing some initial guide for the detector design.

•Total 187 pages!

(1606.0940v1)

Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies

Editors:

R. Contino^{1,2}, *D.* Curtin³, *A.* Katz^{1,4}, *M.* L. Mangano¹, *G.* Panico⁵, *M. J.* Ramsey-Musolf^{6,7}, *G.* Zanderighi¹

Contributors:

C. Anastasiou⁸, W. Astill⁹, J. K. Behr^{10,11}, W. Bizon⁹, P. S. Bhupal Dev¹², D. Bortoletto¹⁰, Q.-H. Cao^{13,14,15}, F. Caola¹, J. Chakrabortty¹⁶, C.-Y. Chen^{17,18,19}, S.-L. Chen^{15,20}, F. Dulat⁸, G. Bambhaniya²¹, D. Buttazzo²² D. de Florian²³, C. Englert²⁴, J. A. Frost¹⁰, B. Fuks²⁵, T. Gherghetta²⁶, G. Giudice¹, J. Gluza²⁷, N. Greiner²⁸, H. Gray²⁹, N. P. Hartland¹⁰, C. Issever¹⁰, T. Jeliński²⁷, A. Karlberg⁹, J. H. Kim,^{30,31,32}, F. Kling³³, A. Lazopoulos⁸, S. J. Lee^{34,35}, Y. Liu¹³, G. Luisoni¹, J. Mazzitelli^{23,36}, B. Mistlberger¹, P. Monni⁹, K. Nikolopoulos³⁷, R. N Mohapatra³, A. Papaefstathiou¹, M. Perelstein³⁸, F. Petriello³⁹, T. Plehn⁴⁰, P. Reimitz⁴⁰, J. Ren⁴¹, J. Rojo¹⁰, K. Sakurai⁴², T. Schell⁴⁰, F. Sala⁴³, M. Selvaggi⁴⁴, H.-S. Shao¹, M. Son³⁰, M. Spannowsky⁴², T. Srivastava¹⁶, S.-F. Su³³, R. Szafron⁴⁵, T. Tait⁴⁶, A. Tesi⁴⁷, A. Thamm⁴⁸, P. Torrielli⁴⁹, F. Tramontano⁵⁰, J. Winter⁵¹, A. Wulzer⁵², Q.-S. Yan^{53,54,55}, W. M. Yao⁵⁶, Y.-C. Zhang⁵⁷, X. Zhao⁵³, Z. Zhao^{53,58}, Y.-M. Zhong⁵⁹

Abstract

This report summarises the physics opportunities for the study of Higgs bosons and the dynamics of electroweak symmetry breaking at the 100 TeV pp collider.

The Contents

•Study of single-Higgs production modes, cross section predictions

- Prospects for precision
 measurements of
 Higgs couplings
- Multi-Higgs production and measurement of the trilinear Higgs selfcoupling
- •Extended Higgs sectors in BSM theories

Contents

	SM Higgs production
.1	Inclusive $gg \to H$ production
.2	Higgs plus jet and Higgs p_T spectrum in $gg \to H$
.3	Higgs plus jets production in $gg \to H$
.4	Associated VH production
.5	VBF Higgs production
.6	Associated $t\bar{t}H$ production
.7	Rare production modes
2	Prospects for measurements of SM Higgs properties
2.1	Higgs acceptance
2.2	Small-BR H final states at intermediate p_T
2.3	Associated VH production
2.4	Measurement of top Yukawa coupling from the $t\bar{t}H/t\bar{t}Z$ ratio
2.5	Combined determination of y_t and $\Gamma(H)$ from ttH vs $t\bar{t}t\bar{t}$ production 61
2.6	Rare SM Exclusive Higgs decays 66
}	Multi-Higgs production
3.1	Double Higgs production from gluon fusion
3.2	Triple Higgs production and the quartic Higgs self-coupling
ł	BSM aspect of Higgs physics and EWSB
.1	Introduction
1.2	Overview
1.3	Electroweak Phase Transition and Baryogenesis
1.4	Dark matter
1.5	The Origins of Neutrino Mass and Left-right symmetric model
1.6	Naturalness
1.7	BSM Higgs Sectors 142

Higgs physics at 100 TeV

- •Providing an energy frontier as well as intensity frontier experiment.
- •Discovery of extended Higgs sectors >1Tev(EWPT, DM, Naturalness)
- •Huge number of Higgs bosons produced (10Billions), two order of magnitude increase with respect to HL-LHC.
- •VBF, ttH and other rare processes become more important.

	N_{100}	N_{100}/N_8	N_{100}/N_{14}	
$gg \to H$	16×10^9	4×10^4	110	
VBF	1.6×10^9	5×10^4	120	$N_{100} = \sigma_{100 \text{ TeV}} * 20 \text{ ab}^{-1}$
WH	3.2×10^8	2×10^4	65	N = σ * 3ab ⁻¹
ZH	2.2×10^8	3×10^4	85	$14 14' ext{leV}$
$t \bar{t} H$	7.6×10^{8}	3×10^5	420	$1_{8}^{-6} - \sigma_{8TeV}^{-1} 20 10$

Table 20: Indicative total event rates at 100 TeV (N_{100}) , and statistical increase with respect to the statistics of the LHC run 1 (N_8) and the HL-LHC (N_{14}) , for various production channels. We define here $N_{100} = \sigma_{100 \ TeV} \times 20 \ \text{ab}^{-1}$, $N_8 = \sigma_8 \ TeV \times 20 \ \text{fb}^{-1}$, $N_{14} = \sigma_{14 \ TeV} \times 3 \ \text{ab}^{-1}$.

Higgs as a Probe for High Mass Scale (λ)

•For BSM EFT, $\mathcal{L} = \mathcal{L}_{_{SM}} + 1/\lambda^2 * \sum O_k + ... \text{ where } \lambda \text{ is the cut off scale}$ •Any observable: $O = |\langle f|\mathcal{L}|i\rangle|^2 = O_{_{SM}}(1+O(\mu^2/\lambda^2)+...), \mu = m_{_{H}}, \nu, Q$

• $\delta O \sim (\nu/\lambda)^2 \sim 6\% (\text{TeV}/\lambda)^2 \sim 1\% \Rightarrow \lambda > 2.5 \text{ TeV}.$

H at large Pt

•Sensitive to different Higgs production process directly.

•Hierarchy of production channels changes at large Pt(H) $-Pt>800 \text{ GeV: } \sigma(\text{tth}) > \sigma(\text{gg}\rightarrow\text{H}); Pt>1.8\text{TeV: } \sigma(\text{VBF}) > \sigma(\text{gg}\rightarrow\text{H})$

Fig. 40: Integrated Higgs transverse momentum rates, for various production channels, with 20 ab^{-1} . The light-dotted horizontal lines in the left (right) panel correspond to the production of 10^5 (10) events with a Higgs decay to the indicated final states.

$gg \rightarrow H \rightarrow \gamma \gamma$ at large Pt

•With more statistics, we can focus in the semi-boosted region where the backgrounds are smaller, which could improve sensitivities.

• Pt(H)>300 GeV, S/B~1, very clean probe of Higgs up to large Pt.

Fig. 45: Left: Integrated transverse momentum rates (20 ab^{-1}) for a photon pair with mass close to the Higgs mass: signal and QCD background. Right: S/B, significance of the signal, and potential statistical accuracy of the sample.

$gg {\rightarrow} H {\rightarrow} \mu \mu \text{ at large Pt}$

- •Start reach ~ 1% for Pt(H \rightarrow µµ)>100 GeV
- •Reduce systematics on $Br(H \rightarrow \mu\mu)/Br(H \rightarrow \gamma\gamma)$ by using same fiducial cuts.

Fig. 46: Left: Integrated transverse momentum rates (20 ab^{-1}) for a muon pair with mass close to the Higgs mass: signal and DY background. Right: S/B, significance of the signal, and potential statistical accuracy of the sample.

Top Yukawa y_{top} **from \sigma(ttH)/\sigma(ttZ)**

Identical production dynamics

-Correlated QCD corrections, correlated scale dependence

-Correlated αs systematics

•mZ~mH: expect almost identical kinematic boundaries

Correlated PDF systematics

-Correlated Mtop systematics

•For a given y_{top} , the ratio $\sigma(ttH)/\sigma(ttZ)$ is well predicted.

Cross Section Ratio Stability

Production kinematics ratio stability

Top Yukawa y_{top} **Sensitivity**

Top fat C/A jet(s) with R = 1.2, |y| < 2.5, and $p_{T,j} > 200 \text{ GeV}$

- δy_t (stat + syst TH) ~ 1%
- great potential to reduce to similar levels $\delta_{\text{exp syst}}$

- consider other decay modes, e.g. 2l2nu

MLM, Plehn, Reimitz, Schell, Shao arXiv:1507.08169

$H \to 4\ell$	$H\to\gamma\gamma$	$H \to 2\ell 2\nu$	$H \rightarrow b \bar{b}$	
$2.6 \cdot 10^4$ $4.6 \cdot 10^5$		$2.0\cdot 10^6$	$1.2\cdot 10^8$	

Events/20ab⁻¹, with $tt \rightarrow \ell \nu$ +jets

 \Rightarrow huge rates, exploit

boosted topologies

14

Rare Higgs decays

- •Exclusive modes: BR(H→Vγ)~10⁻⁶ (V = vector meson), allow extraction of Yukawa couplings to first 2 quark generations.
 (Bodwin et al PRD 88(2013) 053003, Kagan et al PRL 114(2015) 101802)
 - H → J/Ψ γ (y_c)- H → Φ γ (y_s)H → Φ γ (y_s)
 - $_{-}$ H $\rightarrow \rho \gamma (y_{u,d})$

- Limits on $H \rightarrow J/\Psi \gamma$ from LHC:
 - Current @ LHC 8 TeV 20 fb⁻¹ <1.5x10⁻³
 - LHC @14 TeV 300 fb⁻¹ < 150 x10⁻⁶
 - HL-LHC @14 TeV 3 ab⁻¹ <45x10⁻⁶
- •FCC 100 TeV seems able to reach $\sim 10^{-6}$, close to SM value with 100 times increases in number of events with respect to the HL-LHC.

Search for Extended Higgs Sectors

- •FCC 100 TeV offers unique opportunity to search for extended Higgs sector, which is a prediction of many BSM scenarios.
- •They may play a role in the following open questions
 - -(EW) Baryogenesis: Modified scalar potential can lead to a first order EW phase transition (EWPT).
 - -Identity of Dark Matter
 - •Scalar DM with TeV mass
 - Scalar mediators in hidden sector
 - DM coupled to Higgs portal
 - -Smallness of the neutrino masses
 - •Type-II see-saw through extra scalars
 - –Naturalness of the EW scale
 - •Extended scalar sectors follows in natural theories•SUSY
 - Neutral Naturalness

New analysis of HH production for the FCC report

R.C., C. Englert, G. Panico, A. Papaefstathiou, J. Ren, M. Selvaggi, M. Son, M. Spannowsky, W. Yao

- Goals:
- 1. improve on previous studies and get a commonly-agreed estimate
- 2. study dependence on efficiencies and systematics

Previous analyses:

W. Yao arXiv:1308.6302 (Snowmass Summer Study 2013)
Barr, Dolan, Englert, de Lima, Spannowsky JHEP 1502 (2015) 016
Azatov, R.C., Panico, Son PRD 92 (2015) 035001
H-J. He, J. Ren, W. Yao PRD 93 (2016) 015003

Signal: double Higgs production via gluon fusion (gg
ightarrow hh)

Most sensitivity on trilinear coupling comes from threshold events

Three benchmark scenarios for ECAL and HCAL resolution:

 $\Delta E = \sqrt{a^2 E^2 + b^2 E}$

	ECAL			HCAL				
	$ \eta $	≤ 4	$4 < \eta \le 6$		$ \eta \le 4$		$4 < \eta \le 6$	
	a	b	a	b	a	b	a	b
low	0.02	0.2	0.01	0.1	0.05	1.0	0.05	1.0
medium	0.01	0.1	0.01	0.1	0.03	0.5	0.05	1.0
high	0.007	0.06	0.01	0.1	0.01	0.3	0.03	0.5

Analysis Strategy of HH \rightarrow bb $\gamma\gamma$

- •Interested in events at threshold, no boosted techniques needed.
- •Optimize cuts to maximize sensitivity on trilinear coupling not xsec.
- •Event selections:
 - -Two isolated photons, |eta|<4.5, Pt(1)>60 GeV, Pt(g2)>35 GeV
 - -Jets anti-kt with cone 0.4, |eta|<4.5, pt(b1)>60, pt(b2)>35 GeV
 - -|mgg -mh|<2.0, 3.0, 4.5 for high/med/low scenarios</p>
 - -Pt(bb), Pt(gg)>100 GeV, DeltaR*bb), DeltaR(gg)<3.5

Process	Acceptance cuts [fb]	Final selection [fb]	Events ($L = 30 \text{ ab}^{-1}$)	
$h(b\bar{b})h(\gamma\gamma)$ (SM)	0.73	0.40	12061	
$bbj\gamma$	132	0.467	13996	
$jj\gamma\gamma$	30.1	0.164	4909	
$t\bar{t}h(\gamma\gamma)$	1.85	0.163	4883	S/B=0.45
$b ar b \gamma \gamma$	47.6	0.098	2947	S/sqrt(S+B)=6
$bar{b}h(\gamma\gamma)$	0.098	7.6×10^{-3}	227	
$bj\gamma\gamma$	3.14	5.2×10^{-3}	155	
Total background	212	1.30	27118	2

- overall rescaling of background rate $n_B
ightarrow r_B imes n_B$

- uncertainty on signal rate
$$\Delta_S = \frac{\Delta\sigma(pp \to hh)}{\sigma(pp \to hh)}$$

using "medium" calorimeter resolution

$\Delta\lambda_3$	$\Delta_S = 0.00$	$\Delta_S=0.01$	$\Delta_S = 0.015$	$\Delta_S = 0.02$	$\Delta_S = 0.025$
$r_B = 0.5$	2.7%	3.4%	4.1%	4.9%	5.8%
$r_B = 1.0$	3.4%	3.9%	4.6%	5.3%	6.1%
$r_B = 1.5$	3.9%	4.4%	5.0%	5.7%	6.4%
$r_B = 2.0$	4.4%	4.8%	5.4%	6.0%	6.8%
$r_B = 3.0$	5.2%	5.6%	6.0%	6.6%	7.3%

For $\Delta_S \gtrsim 2.5\%$ the precision on λ_3 is dominated by the theory error on the signal: $\Delta \lambda_3 \simeq 2\Delta_S$

Higgs-self Coupling Sensitivity

•Study Higgs-self coupling vs di-photon mass: significant gain from low to Med, small change from Med to High

• Most signal are central, no significant gain beyond |eta|>3.5 GeV.

Higgs-self Coupling Precision

•Checked the Higgs-self coupling vs tagging rates (Med+30ab-1)

•Precision is below \sim 3.5% with reasonable of tagging/mis-tagging

Triple Higgs coupling sensitivity

 $HH \rightarrow b\bar{b}\ell^+\ell^-\gamma$

Conclusion

- •FCC Volume on "Higgs and EWSB studies" first important step towards a careful assessment of the physics potential of a FCC-hh.
- •FCC-hh both an energy and an intensity frontier machine.
- •Unique opportunities for Higgs and EWSB physics at 100 TeV:
 - –Measuring the Higgs trilinear coupling at <5% level
 - –Ultra-rare Higgs decays including $h \rightarrow V$ gamma
 - Discovering extended Higgs sectors (new EW-charged or singlet scalars)
 - -Testing EW Baryogenesis
 - -Discovering DM sectors
 - -Many more ...