Search for di-Higgs decaying to WW^*WW^* with final state of two same sign leptons plus four jets at LHC

 $\begin{array}{rcl} \text{Jing Ren}^{a} & \text{Ruiqing Xiao}^{b} & \text{Hongjian He}^{b}, \\ \text{Weiming Yao}^{c} & \text{Yaquan Fang}^{d} & \underline{\text{Maosen Zhou}}^{d} \end{array}$

^aUniversity of Toronto, Canada
 ^bTsinghua University, China
 ^cLawrence Berkeley National Laboratory, USA
 ^dInstitute of High Energy Physics, China

International Symposium on Higgs Boson and Beyond Standard Model Physics, WeiHai

15

Outline

1) Introduction

- Why 2HDM ?
- Why $H \to hh \to WW^*WW^* \to \ell^{\pm}\ell^{\pm}\nu\nu\eta qqqq$?

2) The WW^*WW^* production via heavier Higgs Boson H^0

- Review on 2HDM
- $hh \to WW^*WW^*$ production

3 Signal and backgrounds simulations

- Simulations + pre-selections
- Kinematic variables
- Results

4 Probing 2HDM parameter space at LHC

Conclusions

Why 2HDM ?

- Higgs signal strength is consistent with prediction (P.L.B716 (2012), P.L.B716 (2012)), but it can't exclude that there is mixed beyond Standard Model neutral scalar
- 2HDM can provide additional neutral scalar
 - two higgs doublet model, a common framework for new physics with extended higgs sector
 - Although building extended higgs potential with a singlet is simpler, singlet scalar fields coupling with SM particles is depreciated

Why $H \to hh \to WW^*WW^* \to \ell^{\pm}\ell^{\pm}\nu\nu \eta q q q ?$

- $H \rightarrow hh$?
 - Important complement to conventional search, namely $H \to (WW, ZZ, t\bar{t})$
 - $H \rightarrow hh$ decay mode can be dominant within certain parameter space
- $hh \rightarrow WW^*WW^*$? Although $bb\gamma\gamma$ (P.R.D 89, 115006) is most sensitive, but:
 - Considerable production rate
 - $WW^*WW^* \to \ell^{\pm}\ell^{\pm}\nu\nu qqqq$?
 - Highly suppress QCD backgrounds
 - The studies(PRL 89 (2002), 151801) presented the possibility to measure the higgs self-coupling at HL-LHC
 - Tiny deviation in $W^{\pm}W^{\pm}jj$ search in Run-I at ATLAS (ATL-PHYS-PROC-2014-174)

Figure 3: Separation in rapidity of the two tagging jets in the inclusive region. The dashed line with the arrow indicates the VBS region.

• The vacuum expectation values(VEV) is

$$\left\langle \Phi_{1}^{\dagger} \right\rangle = \left(0, \upsilon_{1}/\sqrt{2}\right), \quad \left\langle \Phi_{2}^{\dagger} \right\rangle = \left(0, \upsilon_{2}/\sqrt{2}\right), \quad \tan \beta = v_{2}/v_{1}$$

- Five scalars (h_1, h_2, A^0, H^{\pm})
- α is the mixing angle

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_2 \\ h_1 \end{pmatrix},$$

- h coupling with SM fermions and gauge bosons are solely controlled by (α,β)
- Focus on Type-I and Type-II.

$hh \rightarrow WW^*WW^*$ production

Figure 1: Upper: cross section $\sigma(pp \to HX) \times Br(H \to hh \to WW^*WW^*)$ in 2HDM with $\tan \beta \in [1, 10]$ with $\sqrt{s} = 14$ TeV at LHC, plot(a) and plot(b) present the results for 2HDM-I and 2HDM-II, respectively. Lower: the $M_H - \cos(\beta - \alpha)$ space, plot(a) and (b) present the results for 2HDM-I and 2HDM-II, respectively.

Maosen Zhou (IHEP)

 $hh \to WW^*WW^*$

Simulations + pre-selections

- Signal: $M_H = 300, 400 \ GeV$
- Samples Production
 - Generator: MG5_aMC
 - Showering: Pythia8
 - Fast simulation/reconstruction: Delphes3.3
- Background components
 - Prompt SS: $t\bar{t}W, t\bar{t}H, W^{\pm}W^{\pm}jjjj, Whjj, WZjjjjj$
 - Charge mis-identification: $t\bar{t}(full leptonical), Z + 4jets$
 - Fakes (jet faking lepton): $t\bar{t}(semi-leptonical), W + 5jets$
- basic cuts + event selection
 - $P_t(\ell) > 10 \ GeV, |\eta(\ell)| < 2.5$
 - $P_t(j) > 25 \ GeV, |\eta(j)| < 2.5$
 - Overlap removal
 - $n_\ell^{SS} = 2, n_j \ge 4$

7

15

Kinematic variables

Figure 2: Kinematic distributions of different discriminant variables: 2(a) invariant mass of two closet jets, 2(b) invariant mass of remaining two jets, 2(c) invariant mass of leading lepton and two jets closet to the lepton, 2(d) invariant mass of sub-leading lepton and two remaining jets, 2(e) invariant mass of two leptons and four leading jets, 2(f) linear p_T sum of two leptons and four leading jets, 2(g) minimum ΔR of leading lepton and jet, 2(h) minimum ΔR of sub-leading lepton and jet.

Maosen Zhou (IHEP)

August 17, 2016 8 / 15

Results-H300

Fake backgrounds (jet faking lepton) dominant, especially $t\bar{t}(semi-leptonical)$ A MVA method (BDT) is used to enhance significance.

Table 1: Table of cross section after selections and significance with the assumption of $M_H = 300$ GeV at $\int Ldt = 300 fb^{-1}$

	1	1	I	7	1
	$cross \ section(fb)$	basic cuts $+$	b-veto	$p_T^{l_1}, \underline{F_T}$	BDT > 0.52
		event selection		-	
H300	11.4	1.40	1.23	0.86	0.37
ttW	50.5	8.2	1.0	0.92	0.0028
tth	12.6	2.00	0.28	0.25	0.00364
Whjj	3.9	0.28	0.24	0.21	0.0030
WW4j	19.6	2.74	2.43	2.28	0.00379
WZ4j	155	14.1	12.6	10.2	0.0144
Z + 4 jets	51.5	5.6	5.1	1.6	0.00144
$tar{t}(full-leptonical)$	36.3	6.7	0.89	0.80	0.0023
W + 5 jets	88.7	0.66	0.60	0.52	0.00082
$tar{t}(semi-leptonical)$	1014	100.0	62.4	56.6	0.106
total bkg	1432.1	140.28	85.54	73.38	0.138
	1.9	1.05	1.2	1.7	13

$$Z_{0} = \sqrt{2[(S+B)ln(\frac{S+B}{B}) - S]}$$

 $hh \to WW^*WW^*$

0.1 0.09E promptSS QmisID 0.08 Fakes Total BKG 0.07 0.06 0.05 0.04 0.06 0.03 0.02 0.01 0<mark>⊒</mark> -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 BDT response

Table 2: Table of cross section after selections and significance with the assumption of $M_H = 400$ GeV at $\int Ldt = 300 \ fb^{-1}$

	cross section (fb)	basic cuts + event selection	b-veto	$p_T^{l_1}, \underline{F_T}$	BDT
H400	4.1	0.72	0.62	0.48	0.12
ttW	50.5	8.2	1.0	0.92	0.0015
tth	12.6	2.00	0.28	0.25	0.0020
Whjj	3.9	0.28	0.24	0.21	0.0014
WW4j	19.6	2.74	2.43	2.28	negligible
WZ4j	155	14.1	12.6	10.2	0.010
Z + 4 jets	51.5	5.6	5.1	1.6	0.00062
$t\bar{t}(full-leptonical)$	36.3	6.7	0.89	0.80	0.0016
W + 5 jets	88.7	0.66	0.60	0.52	0.0
$tar{t}(semi-leptonical)$	1014	100.0	62.4	56.6	0.0479
total bkg	1432.1	140.28	85.54	73.38	0.065
Z_0	1.9	1.05	1.2	0.95	6.6

10 / 15

Probing 2HDM parameter space at LHC

Figure 3: $M_H = 300 \ GeV$, Left: 2HDM-I, Right: 2HDM-II; brown and blue regions are corresponding to SM higgs constraints under 3σ confidence level and $H \rightarrow hh, H \rightarrow VV$ constraints, respectively; red represents the discovery region via $hh \rightarrow WW^*WW^*$. Both cases are under the assumption of at $\int Ldt = 300 fb^{-1}$ with $\sqrt{s} = 14 \ TeV$.

11 / 15

Probing 2HDM parameter space at LHC

Figure 4: $M_H = 400 \ GeV$, Left: 2HDM-I, Right: 2HDM-II; brown and blue regions are corresponding to SM higgs constraints under 3σ confidence level, and $H \rightarrow hh, H \rightarrow VV$ constraints, respectively. red represents the discovery region via $hh \rightarrow WW^*WW^*$. Both cases are under the assumption of at $\int Ldt = 300 fb^{-1}$ with $\sqrt{s} = 14 \ TeV$.

- H → hh → WW*WW* phenomenological study was performed within 2HDM; with kinematic selections, the signal significance could be enhanced to 5;
- For low mass of *H*, both types keep potential parameter space for discovery, but type-I is more sensitive;
- For high mass of H, it's less sensitive and type-II is worse;
- It is encouraged to perform $hh \to WW^*WW^*$ search at LHC.

Thank you!

Table 2: Signal and background cross sections of $pp \to WW^*\gamma\gamma \to \ell\nu\ell\nu\gamma\gamma$ and $pp \to WW^*\gamma\gamma \to q\bar{q}'\ell\nu\gamma\gamma$ processes at the LHC (14 TeV) after each set of cuts. The signal significance(Z₀) is computed for the LHC (14 TeV) runs with 300 fb⁻¹ integrated luminosity. We input the heavier Higgs mass $M_H = 300$ GeV, and set the sample signal cross section as $\sigma(pp \to H \to hh \to WW^*\gamma\gamma) = 5$ fb. From the 3rd to 5th columns, we show the signals and backgrounds after imposing each set of cuts. The "Selection + Basic Cuts" are choosing according to Eqs. (11)–(12). In the pure leptonic mode, we impose the Final Cuts $M_T(\ell\ell\nu\gamma), M(\ell\ell), M_T(\ell\ell\nu\gamma\gamma\gamma), \Delta\phi(\ell\ell), \Delta R(\ell\ell), \text{ and } \Delta R(\gamma\gamma)$. In the semi-leptonic mode, we add the Final Cuts $P_T(\gamma) = M_T(q\bar{q}'\ell\nu)$, and $\Delta R(\gamma\gamma)$.

Table 3: Signal and background cross sections of both $pp \to WW^*\gamma\gamma \to \ell\nu\ell\nu\gamma\gamma$ and $pp \to WW^*\gamma\gamma \to q\bar{q}'\ell\nu\gamma\gamma$ processes at the LHC (14 TeV) after each set of cuts. The signal significance(Z₀) is computed for the LHC (14 TeV) runs with 300 fb⁻¹ integrated luminosity. We input the heavier Higgs mass $M_H = 400$ GeV, and set the sample signal cross section $\sigma(pp \to H \to hh \to WW^*\gamma\gamma) = 3$ fb. From the 3rd to 5th columns, we present the signals and backgrounds after imposing each set of cuts. In the pure leptonic mode, we impose the Final Cuts $M_T(\ell\ell\nu\nu)$, $M(\ell\ell)$, $M_T(\ell\ell\nu\nu\gamma\gamma)$, $\Delta\phi(\ell\ell)$, $\Delta\phi(\gamma\gamma)$, and $\Delta R(\gamma\gamma)$. In the semi-leptonic mode, we add the Final Cuts $P_T(\gamma)$, $M_T(q\bar{q}'\ell\nu)$, $\Delta\phi(\gamma\gamma)$, and $\Delta R(\gamma\gamma)$.

$pp \rightarrow \ell \nu \ell \nu \gamma \gamma$	Sum	Selection+Basic Cuts	$M_{\gamma\gamma}, E_T$	Final Cuts
Signal (fb)	0.525	0.0251	0.0214	0.0161
$BG[\ell\nu\ell\nu\gamma\gamma + \ell\ell\gamma\gamma] (fb)$	153.3	0.937	0.00225	0.000215
$BG[t\bar{t}h]$ (fb)	0.0071	0.000493	0.000419	0.000076
BG[Zh] (fb)	0.175	0.0331	0.00210	0.000078
BG[<i>hh</i>] (fb)	0.00222	0.000132	0.000102	0.000062
BG[Total] (fb)	153.48	0.971	0.00488	0.00043
Significance(Z ₀)	0.734	0.439	3.70	5.15
$pp \rightarrow q\bar{q}' \ell \nu \gamma \gamma$	Sum	Selection+Basic Cuts	$M_{\gamma\gamma}, M_{qq}, E_T$	Final Cuts
Signal (fb)	2.2	0.124	0.0937	0.0749
$BG[q\bar{q}'\ell\nu\gamma\gamma]$ (fb)	31.59	0.580	0.0192	0.00912
$BG[\ell\nu\gamma\gamma]$ (fb)	143.3	0.0642	0.00349	0.00182
BG[<i>Wh</i>] (fb)	0.42	0.00509	0.00234	0.00140
BG[WWh] (fb)	0.0023	0.000210	0.000104	0.000050
$BG[t\bar{t}h]$ (fb)	0.0148	0.00163	0.000802	0.000420
BG[<i>hh</i>] (fb)	0.00462	0.000291	0.000160	0.000106
BG[th] (fb)	0.0129	0.000479	0.000186	0.000099
BG[Total] (fb)	175.35	0.652	0.0264	0.0130
Significance(Z_0)	2.87	2.59	7.29	7.47

$pp \rightarrow \ell \nu \ell \nu \gamma \gamma$	Sum	Selection+Basic Cuts	$M_{\gamma\gamma}, E_T$	Final Cuts
Signal (fb)	0.315	0.0165	0.0147	0.0107
$BG[\ell \nu \ell \nu \gamma \gamma + \ell \ell \gamma \gamma]$ (fb)	153.3	0.937	0.00394	0.000169
$BG[t\bar{t}h]$ (fb)	0.0071	0.000493	0.000452	0.000051
BG[Zh] (fb)	0.175	0.0331	0.00247	0.000065
BG[hh] (fb)	0.00222	0.000132	0.000116	0.000074
BG[Total] (fb)	153.48	0.971	0.00698	0.000359
Significance(Z ₀)	0.440	0.289	2.44	4.05
$pp ightarrow q \bar{q}' \ell \nu \gamma \gamma$	$\sigma_{\mathrm total}$	Selection+Basic Cuts	$M_{\gamma\gamma}, M_{qq}, E_T$	Final Cuts
Signal (fb)	1.32	0.0891	0.0671	0.0533
$BG[qq\ell\nu\gamma\gamma]$ (fb)	31.59	0.581	0.0291	0.00672
$BG[\ell\nu\gamma\gamma]$ (fb)	143.3	0.0642	0.00454	0.000891
BG[<i>Wh</i>] (fb)	0.42	0.00509	0.00335	0.00139
BG[WWh] (fb)	0.0023	0.000210	0.000127	0.000057
$BG[t\bar{t}h]$ (fb)	0.0148	0.00163	0.00111	0.000441
BG[hh] (fb)	0.00462	0.000291	0.000197	0.000155
BG[th] (fb)	0.0129	0.000479	0.000247	0.000104
BG[Total] (fb)	175.35	0.653	0.0386	0.0098
Significance(Z_0)	1.72	1.87	4.86	6.22

Assuming same cross-section $(\sigma(pp \rightarrow H \rightarrow hh) = 1 \ pb)$:

	$M_H = 300 \ GeV$	$M_H = 400 \ GeV$
$\overline{Z_0(WW^*WW^*)/Z_0(WW^*\gamma\gamma)}$	0.84	0.99

15

15