

Chunhui Chen Iowa State University On behalf of the ATLAS Collaboration

International Symposium on Higgs Boson and Beyond Standard Model Physics Shandong University, Weihai August 15-19, 2016

Introduction and Outline

- > Exotic physics at ATLAS:
 - \checkmark Searches for NP beyond the SM
 - Many well motived theories
 - ✓ Many diverse & broad topics
 - Large overlap with SYSY searches
- > Outline of the talk:
 - \checkmark Organized as signature based searches
 - High p_T lepton final state
 - Jet final states
 - SM boson final states
 - Unconventional signature

- > Only a few selected new results from ATLAS
- > Many new exotic results covered in other talks at this workshop
 - ✓ SUSY searches
 - ✓ Exotic Higgs beyond SM
 - ✓ Diboson resonances in Ilqq and vvqq final states
 - ✓ VBF WW->IvIv resonance search
 - ✓ HH->bbbb
 - ✓ Dark matter searches

Focus in basic search strategy without too much details

Searches in high P_T lepton final states

Lepton + Miss E_T

- > W'->Inu: interpreted with a Sequential SM gauge boson with same coupling to fermion as SM
- Fit the transverse mass to look for peaking structure
- Background estimate:
 - ✓ SM production of W, top and diboson: MC simulation
 - ✓ Multijet background due to jet fake lepton: data driven matrix method
 - Measured lepton efficiency and fake (loosen lepton ID) rate from data
 - Infer true lepton and fake lepton numbers based on observed "good" & "fake" lepton numbers

Mx

 $m_{\rm T} = \sqrt{2p_{\rm T} E_{\rm T}^{\rm miss}(1 - \cos \phi_{\ell \nu})},$

Lepton + Miss E_T

- No evidence of excesses
 Set production limits using profiled likelihood
 ~ 500GeV better than 2015 analysis
- Dominant by statistical uncertainties
- Systematic uncertainties:
 - Dominated by multijet bg estimate
 - Significant error from PDF variation of W production

	$m_{W'}$ lower limit [TeV]				
Decay	Expected	Observed			
$W' \to ev$	4.44	4.42			
$W' \rightarrow \mu \nu$	4.13	4.06			
$W' \to \ell \nu$	4.62	4.59			

Ref: ATLAS-CONF-2016-061

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-061/

Narrow Di-Lepton Resonance

- > Theory motivation: Additional a Gauge boson (SSM), Extra-dimension (RS graviton), E6
- > Fit the di-lepton invariant mass to look for peaking structure
- Background estimate:

e,µ

Mx

- MC for real 2 leptons from SM production: Z, top and diboson:
- ✓ W+jets and multijet background due to jet fake lepton: data driven matrix method
 - Measured lepton efficiency and fake (loosen lepton ID) rate from data
 - Infer true lepton and fake lepton numbers based on observed "good" & "fake" lepton numbers

Narrow Di-Lepton Resonance

- No evidence of excesses
- Set production limits using profiled likelihood
 ~ 400GeV better than 2015 analysis
- Dominant by statistical uncertainties
- Systematic uncertainties:
 - ✓ Dominated PDF variation of DY production

			Lower limits on $m_{Z'}$ [TeV]					
Model	Width [%]	θ_{E_6} [Rad]	e	e	μ	μ	l	l
			Obs	Exp	Obs	Exp	Obs	Exp
$Z'_{\rm SSM}$	3.0	-	3.85	3.86	3.49	3.53	4.05	4.06
Z'_{χ}	1.2	0.50	3.48	3.49	3.18	3.19	3.66	3.67
$Z_{\rm S}^{\prime}$	1.2	0.63π	3.43	3.44	3.14	3.14	3.62	3.61
Z'_I	1.1	0.71π	3.37	3.37	3.08	3.08	3.55	3.55
Z'_n	0.6	$0.21 \ \pi$	3.25	3.25	2.96	2.94	3.43	3.42
$Z'_{\rm N}$	0.6	-0.08π	3.23	3.23	2.95	2.94	3.41	3.41
Z'_{ψ}	0.5	0π	3.18	3.18	2.90	2.88	3.36	3.35

Ref: ATLAS-CONF-2016-045

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-045/

Searches in high P_T jets final states

Heavy resonance decaying to di-jets

- Particles in NP that can be produced in LHC will couple with partons in proton \geq
 - Decaying to parton is dominant final states dominated
 - ✓ Possible large production cross section
 - Excited quarks, new heavy gauge bosons, quantum black holes and contact interaction
- Search Strategy: mass and angular distribution of the dijet events
 - \checkmark Y*: half of the rapidity difference between 2 jets

$$\chi = e^{2|y^*|} \sim \frac{1 + \cos \theta^*}{1 - \cos \theta^*}$$

- Event selection
 - \checkmark Single jet trigger with p_T>380GeV: ~ 99.5% efficiency for selected offline events
 - ✓ Leading (sub-leading jet) with p_T >440 (60) GeV
- Resonance search using m_{ii} distribution
 - Empirical analytical function to describe SM background

 - Used in dijet m_{jj} searches at lower collision energies Test with MC simulated events with additional free parameters/functions

 $f(z) = p_1(1-z)^{p_2} z^{p_3}$

- \checkmark z=m_{jj}/sqrt(s), parameter p₁, p₂ and p₃ fitted from data
 > Resonance search using angular distribution: dN/dx
 - - Background distribution modeled from MC simulated events

Heavy resonance decaying to di-jets

10

Heavy resonance decaying to di-jets

Ref: ATLAS-CONF-2016-069 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-069/

Chunhui Chen, Iowa State University

Heavy Resonance on b-jet final state

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-060/

Pair Produced Resonance

Chunhui Chen, Iowa State University

13

Light Resonance with ISR

Ref: ATLAS-CONF-2016-070 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-070/

Chunhui Chen, Iowa State University

14

Searches in SM Boson Final states

Resonance decaying to SM Bosons

✓ Jet substructure: exam the energy cluster distribution in the single jet

X->VV (V=W,Z,H) Resonance Searches

Chunhui Chen, Iowa State University

Comparison between Run 1 & 2 results

Run 1 excess: 2TeV, 3.4 sigma (local), 2.5 sigma (Global)
Not confirmed in Run 2 (2015 + 2016 13 TeV data)

X->VV (V=W,Z,H) Resonance Searches

- Limits on other theoretical models as well: Gravitor
- Similar sensitivity in different final states
- Probe heavy mass at the TeV scale
- > Still limited by statistical uncertainties

X->VV (V=W,Z,H) Resonance Searches

Wb Resonance

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-072/

Unconventional Signature

Displaced Lepton Jets

 Long lived neutral particles predicted by Hidden sector/Dark sector that don't couple directly with the SM

- Displaced jet: narrow jets with litter energy deposition in the EM calorimeter, and no inner detector tracks
- Lepton jet: collinear jet-like structure containing leptons/pions

Displaced Lepton Jets

 $|\Delta \phi|$ between the two reconstructed LJs

Counting analysis: data driven approach to estimate background (ABCD method) >

Category	Observed events	Expected background
All events	285	$231 \pm 12 \text{ (stat)} \pm 62 \text{ (syst)}$
Type2–Type2 excluded	46	$31.8 \pm 3.8 \text{ (stat)} \pm 8.6 \text{ (syst)}$
Type2–Type2 only	239	$241 \pm 41(\text{stat}) \pm 65(\text{syst})$

FRVZ model	$m_{\rm H}~({\rm GeV})$	Excluded $c\tau$ [mm]
Higgs $\rightarrow 2\gamma_{\rm d} + X$	125	$2.2 \le \mathrm{c}\tau \le 111.3$
Higgs $\rightarrow 4\gamma_{\rm d} + X$	800	$3.8 \le c\tau \le 163.0$
Higgs $\rightarrow 2\gamma_{\rm d} + X$	125	$0.6 \le c\tau \le 63$
Higgs $\rightarrow 4\gamma_{\rm d} + X$	800	$0.8 \le c\tau \le 186$

Ref: ATLAS-CONF-2016-042 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-042/

Conclusion

- Very broad and rich exotic physics program at ATLAS
 - \checkmark Only a few selected new results were reported here
 - ✓ Start to probe many possible new particles/NP scenario at TeV scale
 - ✓ Strong constraint for some NP scenario
- > Current results still dominated by statistical limitation
 - Expect significant better physics reach with more data (HL-LHC)

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

The ATLAS Detector

