BSM Higgs searches @CMS

Li Yuan Beihang University On Behalf of CMS Collaboration

ISHBSM, Weihai, Shandong August 16, 2016

Outline

- Introduction
- Overview BSM Higgs
- BSM Higgs searches
 - ♦ Constraints via Higgs coupling measurement
 - Exotic Higgs decays searches
 - ✦ High mass Higgs searches
 - ✦ Low mass Higgs searches
 - Charged Higgs searches
- Conclusion

The "new" scalar boson

 $\mu = 1.09^{+0.11} - 0.10 = 1.09^{+0.07} - 0.07 (stat)^{+0.04} - 0.04 (expt)^{+0.03} - 0.03 (thbgd)^{+0.07} - 0.06 (thsig)$

Introduction

• Discovery of a scalar boson consistent with SM Higgs

- Is it SM Higgs or something else ?
- new window for physics beyond SM

• Non-SM interpretation

- the observed boson: part of an extended scalar sector
- large variety of models: 2HDM, MSSM...

• Search strategies:

- direct searches: additional charged or neutral Higgs bosons
- indirect searches: measurement of properties of Higgs boson at 125GeV, constraints to be in-compatible with the SM

BSM Higgs Models

• Additional EW Singlet: h, H

• Two Higgs Doublet Model (2HDM)

- an additional doublet
- four types based on coupling structure

• Minimal Supersymmetric Standard Model (MSSM)

- symmetry between boson and fermion, two Higgs Doublets in Higgs sector
- search for neutral and charged Higgs bosons

• Next-to-Minimal SUSY (NMSSM)

-
- 2HDM and MSSM have a rich phenomenology, compatible with SM-like Higgs boson. Focus in this talk

Constraints on BSM via Higgs Couplings

- Light Higgs couplings measured by combination of various channels (7+8 TeV)
- Using SM Higgs boson masses m_H ~ 125.0 GeV
- In 2HDM, the couplings of neutral Higgs to up-type and down-type modified, we test e.g $\lambda_{du} = \kappa_d / \kappa_u$, $\lambda_{lq} = \kappa_l / \kappa_q$
- Directly test the 125GeV higgs coupling with BSM particles

Invisible decay (1)

• Search for evidence of invisible Higgs decay mode

- extensions of the SM allow Higgs decay into stable or long-lived particles
 - e.g dark matter candidate as Weak Interacting Massive Particle (WIMP)
- event characteristic: large missing energy

• Using the Higgs production in association with boson or jets (used for tagging events)

- VBF (most sensitive channel)
- $Z(\rightarrow ll) H (\rightarrow inv.)$ or $Z(\rightarrow jj) H (\rightarrow inv.)$

Observed Limit with VBF only: : BRinv < 0.69 (2015 data), BRinv < 0.57 (2012 data)

7

Invisible decay (2)

Combination of VBF, VH and ggH-tagged events with 2011, 2012 and 2015 data.

Invisible decay — 2016 data

BR(H \rightarrow inv) < 0.44 (expected 0.56)

Lepton Flavour Violating Decay

• Allowed in many BSM models

• Higgs doublet, composite Higgs, Randall-Sundrum models

• Search with 2012 data: $H \rightarrow \mu \tau$, $H \rightarrow e \tau$, $H \rightarrow e \mu$

High Mass Higgs Searches

This talk show results based on Fermionic channels.

Searches with bosonic channels covered by Tongguang's talk in this conference..

Neutral Higgs bosons searches

- The couplings of MSSM Higgs bosons to down-type fermions enhanced
 - especially for large $\tan \beta$ value (ratio of vacuum expectation values of the doublets)
 - enhanced production mode with associated b-quarks
 - increased branching fraction to τ leptons and b-quarks
 - 3 neutral: $h^0(CP \text{ even})$, $H^0(CP \text{ even})$, $A^0(CP \text{ odd})$
 - the $\tau\tau$ decay mode sensitive to neutral higgs boson searches

Neutral Higgs boson searches — $\tau\tau$

• Search through $\tau\tau$ decay mode with 2015 data, using the following channels

- $\tau_e \tau_\mu$ (6%), $\tau_e \tau_{had}$ (23%), $\tau_\mu \tau_{had}$ (23%), $\tau_{had} \tau_{had}$ (42%)
- \bullet discriminating variable: transverse invariant mass of tau pair $\,m_{T_{\!,}\,\tau\tau}$

 $m_{T, \tau\tau}$ in $\tau_{\mu} \tau_{had}$ no btag category

exclusion limits in m_h^{mod+} scenario

exclusion limits in hMSSM scenario

CMS-PAS-HIG-16-006

No excess beyond the SM expectation.

Neutral Higgs boson searches — bb

• Search through bb decay mode with 2015 data using the following selections

- at least two jets pass the btagging medium operating point, and one pass tight
- \bullet the two jets with the highest b-tagging weights with p_T > 100GeV, and $\Delta\eta$ < 1.6
- lepton veto

CMS-PAS-HIG-16-025

Neutral Higgs boson searches — $\mu^+ \mu^-$

- Main production modes: gluon fusion, association production with bb
- Branching fraction to $\mu \mu$ is 3 orders smaller than $\tau \tau$, but with good mass resolution

Low Mass Higgs Searches

$\mathbf{H} \boldsymbol{\rightarrow} \boldsymbol{\gamma} \boldsymbol{\gamma}$

- NMSSM: $\sigma XBR(H \rightarrow \gamma \gamma)$ is ~3.5 higher compared to SM
- Range: [80, 110] GeV
- 4 event categories based on diphoton event MVA
- Background model: diphoton continuum +Z peak contamination

Exclude scalars with σXBR from 0.8 to 3 times the SM.

Search for light Higgs in H(125)→aa(hh)

- Many BSM models allows H(125)→aa or H(125)→hh
 - 2HDM, NMSSM, EWS
- BR(a/h $\rightarrow \tau\tau$) dominant if m(h) < 11 GeV, but still sizeable if m(h) > 11 GeV

Light pseudoscalar Higgs A in association of bb

- In the context of 2HDM Type-II, allows production of $A(\rightarrow \tau \tau)$ +bb
- Range: [25, 80] GeV
- Analyses based on 2012 data, include three sub-channels: $\tau_e \tau_{\mu}$, $\tau_e \tau_{had}$, $\tau_{\mu} \tau_{had}$

Exclude wrong-sign Yukawa coupling and large tanß for 2HDM type II.

Charged Higgs Searches

Charged Higgs searches

• Charged Higgs production involves top-quarks

• Production mode depending on m(H+) relative to m(top)

• Decay via H+ $\rightarrow \tau v/cs/tb$, branching ratio depending on m(H+) and tan β

- light charged Higgs: $\tan \beta < 1$, H+ \rightarrow cs dominant; $\tan \beta > 1$, H+ $\rightarrow \tau \upsilon$ dominant
- heavy charged Higgs: $H \rightarrow \tau v$ still sizeable, $H \rightarrow tb$ become large

Charged Higgs searches — τυ, tb

Charged Higgs searches — cs

- Light charged Higgs search through channel ttbar→bW(→lv)bH⁺(→cs)
 - very similar final states as SM ttbar→bW(→lv)bW(→jj), discriminate on m_{jj}
 - limit set on BR(t \rightarrow bH+) assuming BR(H⁺ \rightarrow cs)=100%

JHEP 12 (2015) 1

Charged Higgs searches — WZ

• Probing Georgi-Machacek Higgs Triplet Model in mass range of [200, 1000] GeV

- Both W and Z decays leptonically
- Vector Boson Scattering topology (Two jets with large rapidity separation and high dijet mass)

Conclusion

- BSM Higgs search very active field
 - large variety of analyses
 - large potential to make a discovery
- Rich results are produced
 - only a small fraction of results shown in this talk
 - tight constraints to neutral and charged Higgs
 - limits on exotic decays
- No sign for new physics found yet!
- Still lots of analyses ongoing based on 13 TeV data. Looking forward to more exciting results!

Two Higgs Doublet Models

• 2HDM: one of the simplest extensions of the SM

- adding a second EW doublet to the Higgs sector
- predicted 5 Higgs bosons:
 - 3 neutral: $h^0(CP \text{ even})$, $H^0(CP \text{ even})$, $A^0(CP \text{ odd})$
 - 2 charged: H^{\pm}
- Described by:
 - 4 Higgs boson masses
 - $\tan \beta$ (ratio of vacuum expectation values of the doublets)
 - mixing parameter α (between two neutral CP even Higgs: h^0 H⁰)

• Four types: based on coupling structure

Coupling scale factor	Туре І	Туре ІІ	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
K _u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
Kd	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
ĸı	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

• MSSM: 2HDM type II + SUSY sector

Standard Model Couplings

$$\kappa_{\gamma}^2 \sim 1.59 \cdot \kappa_W^2 - 0.66 \cdot \kappa_W \kappa_t + 0.07 \cdot \kappa_t^2$$
⁽²⁾

$$\kappa_g^2 \sim 1.06 \cdot \kappa_t^2 - 0.07 \cdot \kappa_t \kappa_b + 0.01 \cdot \kappa_b^2 \tag{3}$$

$$\kappa_{\rm VBF}^2 \sim 0.74 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2 \tag{4}$$

$$\kappa_{\rm H}^2 \sim 0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 + 0.06 \cdot \kappa_\tau^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2.$$
(5)