Studies on VBF $H \rightarrow \gamma \gamma$ in ATLAS detector

reference : ATLAS-CONF-2016-067 ATLAS-CONF-2016-081

Yu Zhang on behalf of ATLAS Collaboration IHEP, CAS

Internaltional Symposium on Higgs Boson and BSM, Weihai

Introduction

- HGam Coupling analysis:
 - aim : measure the signal strength : $\mu = \sigma_{obs} / \sigma_{SM}$ and fiducial cross section in each production mode in diphoton final state
 - Contents Focus on VBF
 - VBF signature
 - ✓ high-pt forward dijet
 - define two VBF-sensitive categories by cut-based and MVA (BDT)
 - results in 2015+2016 data
- Diphoton selection
 - pT>25GeV, | η |<2.37,exclude crack region
 - two tight, isolated photon
 - pT γ 1(γ 2)/m γ γ >0.35(0.25)

Discriminating variables used in Run1 3

variables used in Run1

Variables	Definition	Separation power
m _{jj}	Invariant mass of dijet	0.256
$\Delta \eta_{jj}$	Pseudo-rapidity separation of dijet	0.130
$\Delta \Phi_{\gamma\gamma,jj}$	Azimuthal angle between diphoton and dijet system	0.199
p_{Tt}	Diphoton p_T projected perpendicular to the diphoton thrust axis	0.235
$\Delta R_{\gamma,i}^{min}$	Minimum ΔR between one of the two leading photons and the corresponding leading jets	0.185
$\eta^{Zeppenfeld}$	$ \eta_{\gamma\gamma} - 0.5 * (\eta_{j1} + \eta_{j2}) $	0.126

Separation power

- $\langle S^2 \rangle = \frac{1}{2} \int \frac{(\hat{y}_s(y) \hat{y}_b(y))^2}{\hat{\mu}_s(y) + \hat{\mu}_b(y)} dy$
- > two forward jet \rightarrow large $\Delta \eta_{ii}$
- > high pT and large $\Delta \eta_{ii} \rightarrow$ large m_{ii}
- > central diphoton and forward dijet \rightarrow large $\Delta R^{\min}_{\gamma,j}$, η^{Zepp}
- \succ two balance high pT jet \rightarrow high pTt

Distributions of variables

- data sideband (exculde 120-130GeV) is consistent with $\gamma \gamma + \gamma j+jj$ background
- these variables show good separation power
- they are to be used in category optimization

investigate more variables

- two more variables :
 - scalar pT sum of γ , γ , j, j
 - $\ pT_{\gamma \ \gamma} / m_{\gamma \ \gamma}$
- do not use these two variables due to correlation with m_{y y}

Variables	separation power	correlation with $m_{\gamma\gamma}$	correlation with $m_{\gamma\gamma}$	
	64. 1954	in signal sample	in background sample	
sum $p_{T\gamma,\gamma,j,j}$	0.263	0.015	0.18	
$p_{T\gamma\gamma}/m_{\gamma\gamma}$	0.250	-0.008	-0.066	

correlation to $m_{\gamma \gamma}$

- the used variables should not be correlated to $m_{\gamma \gamma}$
- correlation with $m_{\gamma \gamma}$

	in signal	in background
m _{jj}	0	0.01
$\Delta \eta_{jj}$	-0.01	-0.02
$\Delta \phi_{\gamma\gamma, jj}$	0	0.04
$\mathbf{p}_{Tt\gamma\gamma}$	0.03	0.04
$\Delta R_{\gamma, j}^{min}$	-0.01	-0.02
η^{Zepp}	-0.01	0.03
$\mathbf{pT}_{\gamma\gamma\mathbf{j}\mathbf{j}}$	0.02	0.18
${\bf pT}_{\gamma\gamma}/{f m}_{\gamma\gamma}$	0.01	-0.07

stick to the same 6 variables as Run1

opimization strategy

- Normalized to 4 fb-1
- Background modelling
 - Sherpa $\gamma \ \gamma$ is used to describe irreducible $\gamma \ \gamma$ background
 - RevID+RevIso (events fail ID or ISO from data control region) is used to describe reducible γ j and jj background
- Scan the cut and get the highest significance

$$\sigma_{VBF} = \sqrt{2 \times \left\{ (N_{VBF} + N_{ggF} + N_{background}) \times ln(1 + \frac{N_{VBF}}{N_{ggF} + N_{background}}) - N_{VBF} \right\}}$$

Cut-based optimization

- In each signal efficiency point, decide a best background-rejection selection
- Scan the signal efficiency and calculate the significance
- First optimize a cut-based tight category and then a cut-based loose category

follow the variable combination in Run1

	m _{jj}	$\Delta \eta_{jj}$	$\Delta \Phi_{\gamma\gamma,jj}$	$\Delta R_{\gamma,j}^{min}$	$\eta^{Zeppenfeld}$
tight category	> 500 GeV	> 3.9	> 3	> 1.4	> 2.4
loose category	> 350 GeV	> 2.5	> 2.7		-

MVA optimization

- Training strategy:
 - I : training Sherpa γγ+RevID+RevIso(bkg) against
 VBF
 - Π : training $\gamma\gamma$ +RevID+RevISO+ggF(bkg) against VBF
- Use same 6 variables as Run1

•		BDT cut for tight category	BDT cut for loose category
	6 variables, ggF not included	[0.88, 1]	[0.61, 0.88]
	6 variables, ggF included	[0.87, 1]	[0.58, 0.87]

• Expected significance is same

6 variables	not include ggF		include ggF	
	MVA tight	MVA loose	MVA tight	MVA loose
VBF	1.64	2.17	1.71	2.18
ggF	0.51	1.90	0.56	2.00
background	2.42	17.71	2.70	19.04
VBF purity	0.76	0.53	0.75	0.52
significance	0.88	0.47	0.88	0.47
combined significance	1.00		1.00	

comparison between cut-based and MVA10

normalized to 4 fb⁻¹

	cut-based tight	cut-based loose	MVA tight	MVA loose
VBF	2.22	2.57	1.64	2.17
ggF	0.83	3.51	0.51	1.90
background	8.06	74.74	2.42	17.71
VBF purity	0.73	0.42	0.76	0.53
significance	0.72	0.29	0.88	0.47
combined significance	0.	78	1.	.00

- MVA deals with the correlation between different variables better than cut-based, so it improves the significance
- gain 0.22 from MVA (BDT)

signal purity

• the fraction of different production mode in each category

result in 2015+2016 data

12

• 3.2 + 10.1 = 13.3 fb⁻¹

- the red and green show the difference between observation and SM prediction
- observed signal strength is 124% larger than SM, but within 2 sigma

$$\mu_{VBF} = 2.24 + 0.80 \\ - 0.71$$

result with 2015+2016 data 13

 μ_{ttH}

 μ_{VH}

 μ_{VBF}

μ_{Run-2}

 global signal strength is consistent with SM prediction

 65^{+32}_{-31} fb $\sigma_{qqH} \times \mathcal{B}(H \to \gamma \gamma) =$ $\sigma_{\rm VBF} \times \mathcal{B}(H \to \gamma \gamma) = 19.2 \stackrel{+6.8}{_{-6.1}} \text{ fb}$ $\sigma_{\rm VH} \times \mathcal{B}(H \to \gamma \gamma) = 1.2 \stackrel{+6.5}{_{-5.4}} \text{fb}$ $\sigma_{t\bar{t}H} \times \mathcal{B}(H \to \gamma \gamma) = -0.3 \stackrel{+1.4}{_{-1.1}} \text{ fb}$

Summary

Conference note is approved in ICHEP

 Global signal strength , including VBF , is consistent with SM predition

 More data is needed to confirm whether there is excess with respect to SM and investigate the Higgs property

back up

17

18

160

Events / GeV

inclusive

systematic of VBF

• mass fixed to 125.09 GeV

